
Code Duplication and Reuse in Jupyter Notebooks

by

Andreas Peter Koenzen

B.Sc., Catholic University of Asunción, 2017

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

© Andreas Peter Koenzen, 2020

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Code Duplication and Reuse in Jupyter Notebooks

by

Andreas Peter Koenzen

B.Sc., Catholic University of Asunción, 2017

Supervisory Committee

Dr. Neil A. Ernst, Supervisor

(Department of Computer Science)

Dr. Margaret-Anne D. Storey, Supervisor

(Department of Computer Science)

iii

Supervisory Committee

Dr. Neil A. Ernst, Supervisor

(Department of Computer Science)

Dr. Margaret-Anne D. Storey, Supervisor

(Department of Computer Science)

ABSTRACT

Reusing code can expedite software creation, analysis and exploration of data.

Expediency can be particularly valuable for users of computational notebooks, where

duplication allows them to quickly test hypotheses and iterate over data, without

creating code from scratch. In this thesis, I’ll explore the topic of code duplication

and the behaviour of code reuse for Jupyter notebooks; quantifying and describing

snippets of code and explore potential barriers for reuse. As part of this thesis I

conducted two studies into Jupyter notebooks use. In my first study, I mined GitHub

repositories, quantifying and describing code duplicates contained within repositories

that contained at least one Jupyter notebook. For my second study, I conducted

an observational user study using a contextual inquiry, where my participants solved

specific tasks using notebooks, while I observed and took notes. The work in this

thesis can be categorized as exploratory, since both my studies were aimed at gener-

ating hypotheses for which further studies can build upon. My contributions with this

thesis is two-fold: a thorough description of code duplicates contained within GitHub

repositories and an exploration of the behaviour behind code reuse in Jupyter note-

books. It is my desire that others can build upon this work to provide new tools,

addressing some of the issues outlined in this thesis.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables viii

List of Figures ix

Acknowledgements xiii

Dedication xiv

1 Introduction 1

1.1 Research Questions . 3

1.2 Contributions . 4

1.3 Structure . 5

2 Background & Related Work 6

2.1 Computational Notebooks . 7

2.1.1 Uses of Computational Notebooks 7

2.1.2 Types of Users and Programming Paradigms 9

2.2 Code Duplication and Reuse in Computational Notebooks 10

2.3 Chapter Summary . 13

3 Quantifying and Describing Jupyter Code Cell Duplicates on GitHub 14

3.1 Code Duplicates . 15

v

3.2 Analyzed Jupyter Notebooks Data Set 16

3.3 Code and Function to Detect Duplicates 17

3.4 Computational Constraints . 20

3.5 Detection Parameters . 21

3.5.1 The Cut-Off Value . 21

3.5.2 Lambdas . 22

3.6 Methodology . 25

3.6.1 Detecting Code Cell Duplicates 25

3.6.2 Inductive Coding of Detected Duplicates 25

3.7 Results . 26

3.7.1 Duplicate Type . 27

3.7.2 Repository Duplicates Ratio 27

3.7.3 Duplicate Span . 29

3.7.4 Coding of Duplicates . 30

3.8 Limitations . 31

3.8.1 Limitations of the Clone Detection Code 31

3.9 Discussion . 32

3.10 Chapter Summary . 32

4 Observing Users Using Jupyter Notebooks 34

4.1 Methodology . 34

4.1.1 Coding of Video Data . 37

4.1.2 Quantifying Internal and External Reuse 40

4.2 Results . 40

4.2.1 Code Reuse from Other Notebooks 41

4.2.2 Code Reuse from External Sources 41

4.2.3 Code Reuse from VCS . 44

4.2.4 Internal vs. External Reuse 46

4.2.5 C&P vs. TYPE ON vs. NONE Reuse 46

4.2.6 Writing to git . 47

4.3 Limitations . 49

vi

4.3.1 Observer-expectancy Effect 49

4.3.2 Limitations of GitHub’s Interface 49

4.4 Discussion . 49

4.4.1 Foraging for Information . 49

4.4.2 External Memory and the Google Effect 51

4.4.3 VCS as Write-Only . 51

4.5 Chapter Summary . 52

5 Discussion, Limitations & Implications 53

5.1 Discussion . 53

5.1.1 Code Duplicates and Their Programming Objectives 54

5.1.2 Methods of Reuse . 56

5.1.3 Internal Code Reuse . 57

5.1.4 External Code Reuse . 57

5.1.5 Use of Version Control . 59

5.2 Limitations . 59

5.2.1 Construct Validity . 59

5.2.2 Internal Validity . 60

5.2.3 External Validity . 61

5.3 Implications . 61

5.3.1 Implications for Code Duplication and Reuse 61

5.3.2 Implications for VCS with Jupyter Notebooks 62

5.3.3 Implications for External Reuse 63

5.3.4 Implications for Internal Reuse 63

6 Conclusions & Future Work 64

6.1 Summary of Research . 64

6.2 Final Remarks . 65

6.3 Future Work . 66

A Examples of Duplicated Snippets 68

B Observational Study Tasks 71

vii

C Observational Study Questionnaire 80

C.1 Background . 80

C.2 Questions about Experience . 81

C.3 Questions about Computational Notebooks 82

C.4 Questions about Version Control . 83

C.5 (If applicable) Questions about git 83

D Observational Study Interview 85

D.1 General . 85

E Observational Study Questionnaire Responses 86

F Observational Study Interview Responses 92

G H.R.E.B. Ethics Approval 95

Bibliography 97

viii

List of Tables

Table 3.1 Example of spanning of clones across notebooks in the same

repository. 30

Table 4.1 All codes corresponding to actions participants made while

performing tasks. Cells marked in red correspond to reuse

actions. The type column means NR=Non-Reuse and R=Reuse. 38

Table 4.2 Count of reuse codes for all participants and across all tasks.

Highlighted in red are the highest counts. 41

Table 4.3 Portion of study spent browsing online per participant. Total

Time refers to the total amount of time performing all tasks

and Count refers to the number of times participants opened

a browser to browse for information. 43

ix

List of Figures

Figure 2.1 Example of a Jupyter notebook rendered using the latest ver-

sion of JupyterLab. 8

Figure 2.2 Google Colab function to search and reuse snippets of code

from other notebooks. Snippets can be reused with one click

of the mouse. 11

Figure 3.1 Example snippet derived with a cut-off value between 0.5 and

0.6. This particular snippet has a Duplicate Ratio (DR) value

of 0.53. 22

Figure 3.2 Lambda parameters. 23

Figure 3.3 Example of two code cells detected as clones by the Duplicate

Ratio Function 1. The Levenshtein distance between the two

snippets is 57 and its Duplicate Ratio (DR) is 0.63. 24

Figure 3.4 Example of two code cells detected as clones by the Duplicate

Ratio Function 1. The Levenshtein distance between the two

snippets is 57 and its Duplicate Ratio (DR) is 0.27. 24

Figure 3.5 Image depicting the process of inductive coding performed by

me and a colleague as part of this thesis. 26

Figure 3.6 Histogram of Levenshtein distances as computed by Duplicate

Ratio Function 1 for the cut-off value of 0.3. Since this figure

corresponds to a histogram and I used bins of size 30, the

intersection of the two dashed red lines show the number of

Type-1 duplicates (Levenshtein distance equal zero). 28

x

Figure 3.7 Jupyter notebooks against code duplicates per repository (left)

and code cells against code duplicates per repository (right).

The red lines corresponds to the Regression Line with their

corresponding R2 values. 29

Figure 3.8 Inductive coding of cell code snippets marked as duplicates

by my function. 30

Figure 4.1 Coding of steps my participants made while completing the

tasks for this observational study. Coded from video and au-

dio recordings. 35

Figure 4.2 Picture showing the provided GitHub web interface with the

repository’s commit tree. 37

Figure 4.3 Picture showing the process of quantifying how much each

participant reused from either internal or external sources. In

the picture we can observe the coding of sites they visited

while browsing online, along with their corresponding times. 39

Figure 4.4 Time participants spent browsing online for information, seg-

mented by task. 42

Figure 4.5 Average time participants spent browsing online for information. 42

Figure 4.6 Inductive coding of sites participants visited while solving

tasks. Note: Google implies information taken directly from

Google’s results page. 43

Figure 4.7 Participants who tried to reuse from git. 45

Figure 4.8 Reuse from internal sources vs. external ones, segmented by

task. 46

Figure 4.9 Number of times participants went browsing online for infor-

mation, segmented by task. 47

Figure 5.1 Example of a Type-2 duplicate detected by Duplicate Ratio

Function 1 with Levenshtein distance of 42 and Duplicate Ra-

tio of 0.27. The main programming goal of this particular

snippet was coded as Visualization. 54

xi

Figure A.1 This image shows two snippets of code marked as clones by

my Duplicate Ratio Function 1. Threshold 0.0-0.1. This par-

ticular snippet has a Duplicate Ratio (DR) value of 0.04. . . 68

Figure A.2 This image shows two snippets of code marked as clones by

my Duplicate Ratio Function 1. Threshold 0.1-0.2. This par-

ticular snippet has a Duplicate Ratio (DR) value of 0.18. . . 69

Figure A.3 This image shows two snippets of code marked as clones by

my Duplicate Ratio Function 1. Threshold 0.2-0.3. This par-

ticular snippet has a Duplicate Ratio (DR) value of 0.25. . . 69

Figure A.4 This image shows two snippets of code marked as clones by

my Duplicate Ratio Function 1. Threshold 0.3-0.4. This par-

ticular snippet has a Duplicate Ratio (DR) value of 0.39. . . 69

Figure A.5 This image shows two snippets of code marked as clones by

my Duplicate Ratio Function 1. Threshold 0.5-0.6. This par-

ticular snippet has a Duplicate Ratio (DR) value of 0.53. . . 70

Figure A.6 This image shows two snippets of code marked as clones by

my Duplicate Ratio Function 1. Threshold 0.8-0.9. This par-

ticular snippet has a Duplicate Ratio (DR) value of 0.88. . . 70

Figure B.1 Jupyter notebook describing what the participant had to do

during the observational study for Task #1 (Level A). 71

Figure B.2 Jupyter notebook describing what the participant had to do

during the observational study for Task #2 (Level A). 72

Figure B.3 Jupyter notebook describing what the participant had to do

during the observational study for Task #3 (Level A). 73

Figure B.4 Jupyter notebook describing what the participant had to do

during the observational study for Task #1 (Level B). 74

Figure B.5 Jupyter notebook describing what the participant had to do

during the observational study for Task #2 (Level B). 75

Figure B.6 Jupyter notebook describing what the participant had to do

during the observational study for Task #3 (Level B). 76

xii

Figure B.7 Jupyter notebook describing what the participant had to do

during the observational study for Task #1 (Level C). 77

Figure B.8 Jupyter notebook describing what the participant had to do

during the observational study for Task #2 (Level C). 78

Figure B.9 Jupyter notebook describing what the participant had to do

during the observational study for Task #3 (Level C). 79

Figure E.1 Coded answers for questions 1 and 2 of the questionnaire. 86

Figure E.2 Coded answers for question 3 of the questionnaire. 87

Figure E.3 Coded answers for question 4 of the questionnaire. 87

Figure E.4 Coded answers for question 5 of the questionnaire. 87

Figure E.5 Coded answers for question 6 of the questionnaire. 88

Figure E.6 Coded answers for question 7 of the questionnaire. 88

Figure E.7 Coded answers for question 8 of the questionnaire. 88

Figure E.8 Coded answers for question 10 of the questionnaire. 89

Figure E.9 Coded answers for question 11 of the questionnaire. 89

Figure E.10 Coded answers for question 12 of the questionnaire. 90

Figure E.11 Coded answers for question 13 of the questionnaire. 90

Figure E.12 Coded answers for question 14 of the questionnaire. 91

Figure E.13 Coded answers for question 15 of the questionnaire. 91

Figure E.14 Coded answers for question 16 of the questionnaire. 91

xiii

ACKNOWLEDGEMENTS

I would like to thank:

My supervisors Dr. Neil A. Ernst and Dr. Margaret-Anne D. Storey

for wisely and patiently teaching me analytical thinking and for guiding me into

becoming a researcher. It was not an easy path, but I was very fortunate to have

such great supervisors to guide me through.

My fellow colleagues at the CHISEL Lab, for their help, the good laughs and

interesting conversations during lunch time. A special thanks to my good friend

Omar Elazhary for brainstorming with me possible paths for my research.

The participants of my study, for dedicating an hour of their time to my questions

and prying. I am most grateful for their contribution to my work.

The staff of the Computer Science department at the University of Victoria

for their support and help. They made the bureaucratic journey much smoother.

The University of Victoria, my alma mater, for the imparted knowledge.

My family.

Whatever you can do, or dream you can, begin it. Boldness has genius,

power and magic in it.

—W.H. Murray, The Scottish Himalayan Expedition

xiv

DEDICATION

To my daughter Emma and my wife Alicia. To my mother Ana Maŕıa and my

father Jürgen Peter (b 1943, d 1985).

Chapter 1

Introduction

Computational notebooks have become the preferred tool for users exploring and

analyzing data. Their power, versatility and ease of use have made this new medium

of computation the de facto standard for data exploration [1]. During intensive data

exploration sessions, users tend to generate great numbers of artifacts (e.g., graphs,

scripts, notebooks, database files, etc.) [2]. By reusing these artifacts — in the form

of Jupyter code cells — users can expedite experimentation and test hypotheses faster

[3,4]. Despite the fact that software engineering best practices include avoiding code

duplication whenever possible [5,6], it is common behaviour with Jupyter notebooks

as it is especially easy to duplicate cells, make minor modifications, and then execute

them [7,8].

Through appropriate tools, this form of code reuse expedites data exploration, but

creates notebooks that are hard to read, maintain and debug. The recommended way

to reuse code is to create modules, which are standalone code files (e.g., Python or R

scripts) that can be imported locally into a notebook [8]. Unfortunately, it is reported

that only about 10% of notebooks contain such local imports (those imported from

the repository directory) [9]. Hence, there is a great amount of code in notebooks for

which there is no provenance, and understanding where code in notebooks originates

and how it is reused is important if we want to create new tools for this environment.

Previous work in the area of computational notebooks describes developers’ moti-

vations for reuse and duplication but does not show how much reuse occurs or which

2

barriers users face reusing code. To address this gap, I first analyzed GitHub repos-

itories for code duplicates contained in Jupyter notebooks, and then conducted an

observational user study where participants solved specific tasks using notebooks. In

my first study, I focused explicitly on code duplicates.

My definition of code duplicates is that of Roy and Cordy: “snippets of code copied

and pasted with or without modifications, intentionally reused in order save time and

effort” [5], although there is still some debate as to what exactly a clone is [10].

Given the often transient nature of notebooks, combined with the fast-paced

nature of data exploration, I hypothesized that code duplication happens often in

Jupyter notebooks and that it might even be useful for reducing time between ideas

and results while exploring data. While understanding the usefulness of duplicates

is beyond the scope of this thesis and may well be a worthy subject of research in

future studies, I did manage to show with my studies that this activity does happen

with considerable frequency in Jupyter notebooks.

We know from software engineering research that “Cloning can be a good strategy

if you have the right tools in place. Let programmers copy and adjust, and then let

tools factor out the differences with appropriate mechanisms.” [10], I argue that code

duplication can be beneficial for Jupyter notebooks with the support of the “right

tools”.

Code duplicates — also known as code clones — have been studied extensively in

software engineering, and research shows that a significant number of software systems

contain code clones1 [5, 11]. No such study exists for computational notebooks.

I differentiate between code duplication (artifact) and code reuse (behaviour). I

analyzed code duplication inside repositories and not across them. Hence, in this

thesis I use the term code duplicate to signal code that is contained and replicated in

a single project. Although notebooks support cells of multiple types (including code

and markdown text), I focused my study on code cells.

1In this thesis I will use the terms clone and duplicate interchangeably.

3

1.1 Research Questions

The overarching goal of this thesis is to discuss and describe the topic of code reuse

within the realm of Jupyter notebooks from two different perspectives: a quantita-

tive one and a qualitative one. For that purpose, I began my studies with three main

exploratory research questions.

RQ1: How much cell code duplication occurs in Jupyter notebooks? And

what is the main programming goal of these duplicates? To answer this first

question, I opted for a quantitative study, where I mined GitHub repositories con-

taining at least one Jupyter notebook. The goal of this study was to quantify code

duplicates and near-duplicates (this concept will be explained later on). I scoped

my search of duplicates to a randomly sampled data set of 1,000 GitHub repositories

containing at least one Jupyter notebook. Proceeding the detection of duplicates,

I categorized these duplicates using the inductive coding technique, by which I was

able to assign a main programming goal to each snippet.

RQ2: How does cell code reuse happen in Jupyter notebooks? The goal of

this research question was to understand the preferred method of reuse in Jupyter

notebooks, e.g., copy and paste, copy by typing, duplicating other notebooks, etc.

Understanding how code gets inside Jupyter notebooks is very important.

RQ3: What are the preferred sources for code reuse in Jupyter notebooks?

I believe that answering this research question correctly is paramount for the develop-

ment of new tools that augment development using notebooks. Knowing from where

a particular snippet of code came from is essential. If we manage to understand snip-

pet’s sources, then we could build better plugins or extensions to speed up reuse.

To answer the last two research questions I used and designed an observational

lab study (n = 8), where I observed participants while they solved a particular set of

tasks, recording audio/video feed and taking detailed notes of their behaviour. This

4

study was complemented with an opening questionnaire and a closing short interview.

1.2 Contributions

The contribution of this thesis is two-fold: first I managed to quantify and analyze

code duplication in Jupyter notebooks within an acceptable recall, and second, I man-

aged to observe reuse behaviour in Jupyter notebooks.

RQ1: How much cell code duplication occurs in Jupyter notebooks? And

what is the main programming goal of these duplicates? My first study shows

that, approximately one in thirteen code cells in Jupyter notebooks are duplicates,

and that the main programming goal of these duplicated snippets varies between 4

main categories: visualization (21%), machine learning (15%), the definition of func-

tions (12%) and data science (9%).

RQ2: How does cell code reuse happen in Jupyter notebooks? Reuse in

Jupyter notebooks happens through various methods, users reused programming code

by copying and pasting it or by typing it from memory. The most common method of

reuse is copying and pasting, followed by copy by typing, and the least used method

is duplicating a notebook.

RQ3: What are the preferred sources for code reuse in Jupyter notebooks?

The preferred source of code reuse is browsing online for examples. The sites that

were visited the most are: tutorial sites (35%), API documentation (32%) and Stack

Overflow (14%). There was some reuse as well coming from other notebooks previ-

ously completed. The source with the least reuse is version control systems. Some

participants hinted, that there is a correlation between the complexity of the code be-

ing reused and the source from where it is being reused. Simpler tasks can be reused

easily from web sites, but more complex routines, especially long and advanced func-

tions, which belong to one’s own codebase, could merit reuse from other sources as

well, like other notebooks and version control systems.

5

1.3 Structure

This thesis is structured as follows:

Chapter 2: In chapter 2 I briefly introduce the reader to the concept of compu-

tational notebooks and EDA (Exploratory Data Analysis), to conclude the chapter

with an in-depth discussion of the state of the art in code duplication and reuse for

Jupyter notebooks.

Chapter 3: In chapter 3 I explain the details of my first study (GitHub Mining),

the results I obtained, the limitations of this study, and a brief conclusion.

Chapter 4: In chapter 4 I explain the details of my second study (Observational

Study), the results I obtained, the limitations of this study, and a brief conclusion.

Chapter 5: In chapter 5 I discuss the results and general limitations of both studies,

followed by a discussion about the impact these results have on practice and future

research.

Chapter 6: In chapter 6 I conclude this thesis outlining the work done, a brief

overview of my results, and a conclusion of my work.

In the appendix I include additional documents, charts and ancillary data re-

garding both studies. These ancillary documents are not part of the reproducibility

package. This thesis’ reproducibility package can be found at https://doi.org/10.

5281/zenodo.3836691.

https://doi.org/10.5281/zenodo.3836691
https://doi.org/10.5281/zenodo.3836691

6

Chapter 2

Background & Related Work

Computational notebooks are a relatively new interactive computational paradigm

that allows users to interleave code and text via a web interface. Programming code

is introduced and segmented into code cells that are executed in a kernel (Python,

R, Julia, C++, other) with computation output/results returned to the web inter-

face for display. This new way of computation makes sharing and coding easy for

programming newcomers, as users do not need to compile code or deal with low-level

configurations. Several services currently offer computational notebooks: Google Co-

lab [12] & Cloud AI Platform [13], Azure Notebooks [14], Databricks [15], nteract [16],

Apache Zeppelin [17], to name a few. These services provide even more abstraction

by taking take care of kernel configurations and just providing one for the user to

select and use.

In this section I will try to synthesize the literature regarding the intersection

of code reuse and computational notebooks. It is worth mentioning that not much

research has been done in this specific area of research. There have been a few

studies on Jupyter notebooks where code reuse was mentioned, but none has been

dedicated exclusively to this topic. In the next sections I will talk briefly about what

computational notebooks are, using them for data exploration, how developers search

for information when coding, and code duplication and reuse.

7

2.1 Computational Notebooks

Computational notebooks or a notebook interface is a virtual notebook for literate

programming [18]. The first computational notebook was Wolfram Mathematica 1.0

dating back as far as 1988. Notebooks extended work done by Iverson [19], where

a user using a simple interface could introduce mathematical and logical expression

which were computed by an interpreter and the output returned to user. All this

was done interactively, allowing the user to try out different expressions easily. This

is known today as REPL (read-eval-print loop). In 2007, Fernando Perez and Brian

Granger released IPython [20], which was a Python REPL system for scientists, with

support not only for complex code expressions, but also to display rich text and

images. That project evolved into Project Jupyter, altering the interface to a web-

based one, thus introducing support for more complex interactions and display.

Notebooks are designed to offer an easy to use and comfortable interface into

the workflow of scientific computing, from interactive exploration to publishing a

detailed record of computation. Notebooks are organized into cells, chunks of code

and markdown which can be individually modified and run. Output from cells appears

directly below it and it is stored as part of the document itself. Direct output in most

interactive shells can only be text, notebooks can include rich output such as plots,

animations, formatted mathematical equations, audio, video and even interactive

controls and graphics. Prose text can be interleaved with the code and output in

a notebook to explain and highlight specific parts, forming a rich computational

narrative [21].

2.1.1 Uses of Computational Notebooks

Computational notebooks have become the preferred tool for users exploring and an-

alyzing data. Their power, versatility and ease of use have made this new medium

of computation the de facto standard for data exploration [1]. During intensive data

exploration sessions, users tend to generate great numbers of artifacts [2]. By reusing

these artifacts — in the form of Jupyter code cells — users can expedite experimenta-

tion and test hypotheses faster [3,4]. Despite the fact that software engineering best

8

Figure 2.1: Example of a Jupyter notebook rendered using the latest version
of JupyterLab.

practices include avoiding code duplication whenever possible [5,6], it is common be-

haviour with Jupyter notebooks as it is especially easy to duplicate cells, make minor

modifications, and then execute them [7,8].

This form of code reuse expedites data exploration, but creates notebooks that

are hard to read, maintain and debug. The recommended way to reuse code is to

create modules, which are standalone code files (e.g., Python or R scripts) that can

be imported locally into a notebook [8]. Unfortunately, it is reported that only about

10% of notebooks contain such local imports (those imported from the repository

directory) [9].

During a data exploration phase, an analyst looks for patterns in data by trying

9

out different alternatives [22,23] until a satisfactory result is found or new hypotheses

arise, which in turn gives way to new exploration phases. This process is necessary

to achieve satisfactory results, since there is no single path known beforehand that

will lead them to relevant insights, but rather each unfruitful path may well provide

the basis for new ones. This acts in contrast to “professional programming”, where a

programmer is ruled by a set of requirements which were established beforehand and

by which he must abide.

2.1.2 Types of Users and Programming Paradigms

There have been studies outlining code and artifacts’ reuse behaviour before, like

Brandt et al. in [4], where they studied what they called opportunistic programming,

which is the paradigm where programmers work opportunistically, emphasizing speed

and ease of development over code robustness and maintainability. This paradigm is

particularly useful for designing, prototyping and understanding very rapidly in the

development process what the right solution is.

Other studies, like the one by Sandberg et al. [24], have proposed terms like ex-

ploratory programming to refer to “programmers exploring and trying out multiple

alternatives”. This term and definition was coined for occasions where software devel-

opers tried variations in their own code and ran those variations to see if the outcome

improved. This exploratory behaviour also aligns with the role of data analysts, trying

different approaches on data before they can discover meaningful patterns [25].

The term research programmers was also defined by Guo [26] in his Ph.D. thesis to

refer to developers writing code only to extract insights from data. Another relevant

term is end-user developer which was coined by Ko et al. [27] and it is defined as:

“programming to achieve the result of a program primarily for personal, rather [than]

public use”. Data analysts can be classified as end-user developers, given that they

use and extend programming code solely to analyze data.

The activity of exploring data is tightly correlated to reusing previous artifacts,

due to the fact that most code developed using notebooks is not meant for production,

but rather to extract insights as fast as possible [23], hence analysts pay little to no

10

attention to software engineering practices like maintainability [4].

2.2 Code Duplication and Reuse in Computational

Notebooks

Code cloning or duplication is considered to be a bad practice or bad smell in soft-

ware engineering as described by Fowler [6], as it is believed to cause maintainability

issues [5, 28]. However, other studies that analyzed the impact and damage of code

clones have provided evidence that the problem might be less severe than what was

originally estimated [29]. It is always preferable, and in fact it is highly recommended

as good practice, to create modules with functions that can be accessed through in-

terface implementations. However, resorting to duplicates can sometimes simplify the

development effort, especially if the goal of the code is to be used as playground or

testing, as is the case with Jupyter notebooks [7].

Previous studies in computational notebooks have analyzed how people use them,

and reports shows that, when it comes to modularity only about 10% of Jupyter

notebooks contain imports from local libraries [9]. This flexibility in the design of

Jupyter notebooks might be due to the fact that their users are not concerned with

coding best practices [30] but with ease of use. Or due to the fact that users of Jupyter

notebooks prioritize finding a solution over writing high quality code, as reported in

a study by Kery et al. [23].

Although coding best practices are not paramount for users of Jupyter notebooks,

there are projects that try to shift that attitude into one more oriented towards

reusability and modularity. One of these projects is Papermill [31], an nteract [16]

library for passing parameters to Jupyter notebooks. It lets users reuse a notebook

by passing specific parameters at run-time, allowing one to try multiple approaches

without needing to create extra cells. This form of reuse is particular necessary

for computational notebooks since they allow users to execute notebooks from the

command line just like a regular script, and to collect computation results using

different mediums (local files, S3, and others).

11

Figure 2.2: Google Colab function to search and reuse snippets of code from
other notebooks. Snippets can be reused with one click of the mouse.

Another form of reuse that is widely used is the practice of adding snippets of

code to notebooks with the click of a mouse. This form of reuse entails a local library

of snippets, from which the user could read and write snippets. Google Colab [12]

offers a function for users to specify a notebook where reusable snippets of code reside

and from where users can reuse with a simple click (See Figure 2.2). This form of

quick duplication and reuse has been defined by users of notebooks on Stack Overflow

and other internet forums as a “super needed feature” and as a “useful way to insert

small, reusable code chunks into a notebook with a single click”.

Other forms of reuse have been studied before. Kery and Myers [3] reported that

developers relied extensively on copying versions of their files to support their data

exploration sessions. Others have suggested new tools that expedite exploration by

enabling better access to previous artifacts and exploration history [23, 32]. These

tools have focused on internal in-notebook code duplication and reuse, using past cells

and a notebook’s history as a source of reuse.

Head et al. [33] examined how data scientists manage notebook artifacts at Mi-

crosoft, and proposed a tool for cleaning the notebook history by interleaving cells

and pruning unnecessary code, leaving only the code necessary to recreate the desired

12

output. This solution provided a way for developers to clean their notebooks before

reusing and sharing them with others.

Chattopadhyay et al. [34] surveyed Microsoft data scientists about notebook pain

points. One of the reported pain points is the difficulty of exploring and analysing

code, which results in continual copy and paste cycles. Their participants also ranked

activities based on importance, and Reuse Existing code was labeled as at least im-

portant 94% of the time.

It is also worth mentioning that reuse is not limited to any specific source. It

can come from either web pages, other notebooks, or from version control system

(VCS) repositories (e.g., git, SVN and others). Other studies have investigated version

control systems supporting analysts’ exploration of data, like studies conducted by

Kery et al., where participants reported not relying on VCS for their exploration

sessions despite using them often for other tasks [35].

As it is with VCSes, reusing code from other Jupyter notebooks presents some

issues as well. Studies have reported difficulties choosing easily identifiable names for

files and folders [23], which generate confusion when trying to find relevant snippets

of code. Imagine a data analyst creating a different notebook for each analysis path

they decide to take, e.g., they may well end up with many different notebooks named

hypothesis 1.ipynb, hypothesis 2.ipynb and so on [22, 34]. This type of versioning

presents many problems when it comes to finding useful snippets of code, including

how to distinguish one exploration path from the other, and how to quickly know

which one contains the snippet we are looking for. One way to solve these problems

would be to provide for longer names that could describe more in depth what a

notebook contains or is about, but that introduces new problems in itself, namely,

longer and more convoluted names. Another solution would be to allow users to

traverse previous notebooks more easily, maybe by indexing them and offering a

search interface, akin to Google Cloud Source Repositories’ code search function [36].

13

2.3 Chapter Summary

In this chapter I went over previous literature regarding computational notebooks and

code reuse. I have also explained what data exploration using notebooks looks like,

different programming paradigms for data exploration and the relevance of duplica-

tion and reuse. I must admit that the literature surrounding this area of research is

limited, which I consider to be a magnificent opportunity to enhance the underlying

knowledge of this new medium of computation, which has proven to be tremendously

popular among users outside of computer science. In the next chapters I will further

explore this topic by outlining two studies I conducted in order to better understand

the necessities of these users: one quantitative, quantifying and describing clones in

Jupyter notebooks, and the other through a qualitative lens, understanding informa-

tion seeking behaviour and methods of reuse, by using an observational study.

14

Chapter 3

Quantifying and Describing

Jupyter Code Cell Duplicates on

GitHub

Exploratory data analysis is detective work.

—John Tukey, Exploratory Data Analysis

Herzig and Zeller describe mining software archives as a process to “obtain lots

of initial evidence” by extracting data from software repositories [37].

In order to better understand code duplication in computational notebooks, I

decided to mine GitHub repositories using the data set created by Rule et al. in [22].

I decided to use this data set for the reason that the methods used for its creation were

scientifically sounded and proved effective by Rule et al. in [22]. As for the repository

mining approach, it is a highly regarded method of understanding programmer’s

behaviour, and has been used effectively in other clone detection studies [38]. Rule’s

study retrieved 1.25 million notebooks from GitHub, which they estimated as 95% of

the notebooks available in 2017. I used a random sample of 1,000 repositories provided

with this data set. This random sample of 1,000 repositories contained a total of 6,515

Jupyter notebooks. Jupyter notebooks are just self-contained JSON files segmented

into cells, along with base64 encoded output of these cells and associated metadata.

It is important to outline the property of notebooks of being self-contained, because

15

it means that all data necessary to reproduce a particular notebook is contained

within the JSON file, including all output of cells. This property permits notebooks

to grow to a significant size. For example, notebooks with videos or animations can

easily span several megabytes in size. Cells within notebooks can be of various types:

markdown cells are cells that contain documentation or text in Markdown format1,

source code cells contain programming code in any number of different languages2,

output data (e.g., images, audio files, videos, animations, etc., which are encoded as

base64 data [39]), and raw data. This study focuses on source code cells — the ones

with snippets of programming code. For the remainder of this document I will refer

to code cell as cell.

The goal of this first study was to answer RQ1: How much cell code dupli-

cation occurs in Jupyter notebooks? And what is the main programming

goal of these duplicates? using a quantitative method of analysis (software repos-

itory mining) and a qualitative lens (inductive coding).

3.1 Code Duplicates

Code Clone Snippets of code copied and pasted with or without modifications,

intentionally reused in order save time and effort [5].

According to Roy and Cordy [5] clones can be introduced in a software system by:

a) by copy and paste,

b) by forking, and

c) by design, functionality and logic reuse.

and they categorize clones into four types:

Type-1: An exact copy of a code snippet except for white spaces and comments

in the source code.

1https://daringfireball.net/projects/markdown/
2https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

https://daringfireball.net/projects/markdown/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

16

Type-2: A syntactically identical copy where only user-defined identifiers such as

variable names are changed.

Type-3: A modified copy of a Type-2 clone where statements are added, removed

or modified. Also, a Type-3 clone can be viewed as a Type-2 clone with gaps

in-between.

Type-4: Two or more code snippets that perform the same computation but are

implemented through different syntactic variants.

In this study, I focus on the first three types of duplicates. Detecting Type-4

duplicates is complex and I believe the first three types are sufficient to answer RQ1.

In this document I sometimes use the word near-duplicate to refer to Type-2 and

Type-3 clones, and sometimes the word duplicate refers to Type-1 clones, but I make

this distinction explicit. Code clone and code duplicate will be used interchangeably

throughout this document.

3.2 Analyzed Jupyter Notebooks Data Set

The data set I used for this study is the Sample notebook data provided and used

by Rule et al. in [22] and which can be found at this link3. It is composed of 1,000

randomly sampled repositories, which contained exactly 6,515 Jupyter notebooks.

Before jumping into the analysis of code duplicates within this particular data set, I

ensured that this data set was representative of personal behaviour and not collective

behaviour. Since notebooks can be shared and edited by many developers as part of

the same repository or project. I considered that multi-developer code duplication was

possible, like in the following example: imagine a notebook edited by two developers,

where developer A could create a notebook, fill it with code cells that perform some

task, and then developer B within the same project could easily reuse what developer

A did on another notebook. Analyzing collective duplication and reuse was not part

of this thesis and henceforth when referring to duplication and reuse, it will imply

3https://library.ucsd.edu/dc/object/bb2733859v

https://library.ucsd.edu/dc/object/bb2733859v

17

personal behaviour. As outlined by Kalliamvakou et al. in [40], there are perils to

mining GitHub for information. Peril V of their study states: “Two thirds of projects

(71.6% of repositories) are personal.” This peril comes as an advantage for my study,

since personal repositories are the ones I’m interested in. In fact, my own analysis

shows that at least 75% (Third Quartile = Q3) of the 6,515 notebooks in this data

set were edited by one committer. This fact provides sufficient evidence to support

the argument that this data set reflects personal behaviour and not a collective one.

Also, forked repositories were not considered and were excluded from the data set.

3.3 Code and Function to Detect Duplicates

To compute duplicates (Type-1) and near-duplicates (Type-2 and Type-3) for this

study, I implemented my own detection code using Python. For the detection func-

tion — the function that actually computes if two snippets are closed enough to be

catalog as clones — I created a “Duplicate Ratio Function”, which is listed below.

My Python code computes duplicates and near-duplicates in a conservative manner,

in which possible permutations of snippets are computed only once, according to a

triangulation of the SHA256 hash of the cell, the file name of the notebook for which

the cell belongs to and the cell number (the position in the notebook). This conser-

vative approach was necessary to avoid counting cells more than once, and it proved

to be the best approach. The limitations of this design will be covered extensively in

the limitations section of this chapter (See Section 3.8). Using this triangulation of

hash, file name and cell number, I was able to almost uniquely identify a code cell

inside a repository, with some minor collisions.

18

Duplicate Ratio Function 1 Function for computing the duplicate ratio (DR) between
two code cells.

Input: 2 Non-Empty Code Cells (Code Block C1 & C2)

Output: [0,+∞)

Levenshtein distance between blocks.

1: ld : int← LD(C1, C2)

Compute number of characters of both blocks.

2: lg1 : int← len(C1)

3: lg2 : int← len(C2)

Compute number of lines of code of both blocks.

4: lc1 : int← loc(C1)

5: lc2 : int← loc(C2)

Lambdas assign how much weight we want to give to each feature.

6: λ1 : int = 6 {Penalizes short blocks of code.}
7: λ2 : int = 8 {Penalizes few lines of code.}

avg() is a vanilla function to compute averages.

8: return ld÷ ((log avg(lg1, lg2))
λ1 + (log avg(lc1, lc2))

λ2)

Duplicate Ratio Function 1 returns the duplicate ratio (DR) between two cells.

It returns a real number in the interval [0,+∞). LD(C1, C2) corresponds to the

Levenshtein distance [41] between cells C1 and C2. avglen(C1, C2) corresponds to the

average number of characters in cell C1 and C2, and avgloc(C1, C2) is the average

number of lines of code in cells C1 and C2. Parameters λ1 and λ2 are constants which

act as weights. λ1 weights the number of characters, and λ2 weights cell lines of code.

Setting these parameters allowed me to deemphasize short, quick print statements

(few lines of code) or long blocks of text with few lines of code. I experimented

with λ settings, heuristically determining the optimal setting to be λ1 = 6, λ2 = 8,

such that lines of code carry more weight than the number of characters (See Section

3.5.2). In Duplicate Ratio Function 3.1 one can observe my clone detection function

in a more concise mathematical form.

DR(C1, C2) =
LD(C1, C2)

(log avglen(C1, C2))λ1 + (log avgloc(C1, C2))λ2
(3.1)

19

I measured the quality of my detection function in terms of recall. Recall is an

absolute metric used in Information Retrieval for assessing how many of all relevant

results were retrieved. It is also used in Computer Vision object detection as a metric

to assess how many of the ground-truth labels were detected by the network in a

detection layer.

Recall =
TP

TP + FN
(3.2)

The goal of my detection code was to minimize as much as possible the false

negatives (FN) and maximize the true positives (TP).

Precision is another metric also used in Information Retrieval and Computer Vi-

sion. It is used to measure how many of the results retrieved are actually relevant. It

is a relative metric and it is defined as:

Precision =
TP

TP + FP
(3.3)

Another goal of my detection code was to minimize as much as possible the false

positives (FP), plus focus my analysis on detecting only snippets that were actually

clones of another one.

Duplicates with a DR of 0 are identical (Type-1 duplicates), and the bigger the DR

value is, the less similar the two blocks are. I only considered code to be duplicates

if it had a DR of 0.3 or lower. I came up with that cut-off value by heuristics,

experimenting with a smaller random sample, empirically assessing snippets detected

as duplicates. I detected duplicates with different thresholds for the cut-off value,

e.g., 0.0-0.1, 0.1-0.2, ..., 0.9-1.0, and I was able to verify that at threshold 0.8-0.9, the

recall began to decrease drastically (See Appendix A for some examples of detected

clones at different thresholds).

20

I opted for a text-based/string-based method of detecting clones because it has

been used effectively in other studies [42]. I also required cross-language support

because Jupyter notebooks support multiple programming languages and kernels.

The Levenshtein distance is the minimum number of operations (insertions, deletions

or substitutions) required for a string to be equal to another one. This method

for detecting code duplicates proved to be effective for detecting Type-1, Type-2 and

Type-3 duplicates (see below), but with a highly inefficient running time ofO((n∗m)!),

where n and m are the lengths of C1 and C2 in characters. I implemented my own

function (Duplicate Ratio Function 1) in order to have more control in the detection

of snippets. I also removed comments and leading/trailing white space from lines of

code.

3.4 Computational Constraints

The size of this data set is 1.46GB, and presented a computational challenge to

analyze with the conventional machines I had at my disposal. My analysis yielded

that the median (Q2) of Jupyter code cells in a repository is around 28 non-empty code

cells. If I take a conservative number of 25 cells per repository I would have roughly(
25
2

)
= 300 comparisons per repository, with extreme cases in notebooks with more

than a 1,000 cells, yielding
(
1000
2

)
= 499,500 comparisons. Due to this computation

constraint I had to tune the parameters of my function (the cut-off value, λ1 and

λ2) with a much smaller random sample of 100 repositories. The time complexity of

this computation was O((n ∗ m)!), as I explained in the previous paragraph. This

NP-hard complexity made necessary the use of cloud computing services, like Google

Cloud [13]. The detection of code duplicates in the 1,000 repositories of this data set

took approximately 12 days to compute, and it was computed entirely on a Google

Cloud VM instance with two CPUs, which was paid using free credits I had with this

service.

21

3.5 Detection Parameters

The correct tuning of parameters for Duplicate Ratio Function 3.1 is the most im-

portant and difficult to achieve part of this detection study. Incorrect settings can

lead to very low values of precision and recall. In the next subsections I will discuss

in depth how I tuned these parameters for optimal clone detection.

3.5.1 The Cut-Off Value

Problem

The correct operation of Duplicate Ratio Function 1 depends on the correct tweaking

of some parameters, like the cut-off value. The goal of this parameter is to control

which snippet of code is going to be labeled as a clone/duplicate, hence the name:

cut-off. For example, Duplicate Ratio Function 1 will assign a real value between

[0,+∞) for each two cells (A and B), called the DR (Duplicate Ratio). This real

value signifies how similar two code cells are, e.g., if the ratio between A and B is

zero, then it means that A is an identical (Type-1) clone of B and vice versa, hence

B will be marked as a clone and its ratio of zero will be stored along with it in the

database.

The real problem here is to find an optimal value that maximizes the number of

true positives, while at the same time minimizes false positives; in other words, the

optimal value for maximizing recall. This is not a trivial problem, since in my case I

had no ground-truth labels or oracled data set [43] to which I could tune my function.

Tuning Methodology

In order to find the optimal cut-off value I selected a smaller random sample of 50

repositories, for which I retrieved all code cells. Then, from the total number of cells

retrieved from these 50 repositories, I proceeded to select a random sample of 300

code cells. For this random sample of cells, I ran Duplicate Ratio Function 1 and

computed which cells were duplicates using different thresholds of the cut-off value,

e.g., 0.0-0.1, 0.1-0.2, ..., 0.8-0.9, until 0.9-1.0. So for instance, for 0.0-0.1: Duplicate

22

Ratio Function 1 detected all duplicates that had a DR in this interval and these

detected duplicates were saved in a text file, that I later verified empirically.

Figure 3.1: Example snippet derived with a cut-off value between 0.5 and
0.6. This particular snippet has a Duplicate Ratio (DR) value of 0.53.

Solution

The result was as expected, the closer the DR value is to zero the similar the snippets

are. Duplicate Ratio Function 1 detected snippets accurately up to a value of ≈ 0.8,

to which after recall began to drop drastically. The takeaway of this heuristics was to

come up with an optimal cut-off value, and 0.3 was the value I decided would yield

the higher recall. It is worth noticing as well, that other values would have yielded

optimal results as well, like 0.35, 0.40, and probably up to 0.55. This is important to

note, since it may lead to an under-reporting of duplicates, especially Type-3 ones. I

will cover this issue in the limitations section of this thesis. Refer to Appendix A for

more figures depicting snippets detected at different thresholds.

3.5.2 Lambdas

These two parameters (λ1 and λ2) control the weights of the number of characters

and the lines of code in a given snippet, respectively. As we can observe in Figure

3.2, different values of λ account for different function’s growth.

I opted for a value of λ1 = 6 (red line in Figure 3.2a) to assign less weight to small

23

(a) Growth of
log10 avglen(C1, C2) using a

value of 6 for λ. The blue line
is the linear progression and

the red line is my log()
function. Along with other

values for reference.

(b) Growth of
log10 avgloc(C1, C2) using a

value of 8 for λ. The blue line
is the linear progression and

the red line is my log()
function. Along with other

values for reference.

Figure 3.2: Lambda parameters.

snippets of code, but at the same time increase the weight as the snippet grew in

size. This is important to filter-out short snippets, which are ubiquitous in Jupyter

notebooks, like short print statements, short import statements, and others.

The same logic applies to λ2 = 8 (also the red line in Figure 3.2b), which shows

a steeper curve that for λ1, and it is because lines of code (LOC) have more weight

than number of characters, again for the same reason of emphasizing longer, more

complex snippets of code and filtering-out trivial ones.

Example

In this section I will list two examples of how lambda values control the type of snippet

detected as a clone. In Figure 3.3, I show two snippets of code which are very similar

for the exception of the last two lines, the Duplicate Ratio is 0.63, which makes it

too high to qualify as a clone according to the cut-off parameter, set as 0.3. This is

because I used a λ2 value which penalizes short clones that have a high Levenshtein

distance, e.g., if I remove the last line = ax. set title (’Some title .’) from the

left side snippet of Figure 3.3, the Levenshtein distance is reduced from 57 to 27 and

24

the Duplicate Ratio is also reduced to 0.35.

data = pd.DataFrame(
 data = {
 'Task #1 Average': [0, 2],
 'Task #2 Average': [0.375, 2.5]
 }
)
ax = data.plot.bar(cmap='PuBu')
_ = ax.set_title('Some title.')

data = pd.DataFrame(
 data = {
 'Task #1 Average': [0, 2],
 'Task #2 Average': [0.375, 2.5]
 }
)
print(data)

Figure 3.3: Example of two code cells detected as clones by the Duplicate
Ratio Function 1. The Levenshtein distance between the two snippets is 57

and its Duplicate Ratio (DR) is 0.63.

data = pd.DataFrame(
 data = {
 'Task #1 Average': [0, 2],
 'Task #2 Average': [0.375, 2.5],
 'Task #3 Average': [1.375, 0.875],
 'Task #4 Average': [1.375, 0.875],
 'Task #5 Average': [1.375, 0.875],
 'Task #6 Average': [1.375, 0.875]
 }
)
ax = data.plot.bar(cmap='PuBu')
_ = ax.set_title('Some title.')

data = pd.DataFrame(
 data = {
 'Task #1 Average': [0, 2],
 'Task #2 Average': [0.375, 2.5],
 'Task #3 Average': [1.375, 0.875],
 'Task #4 Average': [1.375, 0.875],
 'Task #5 Average': [1.375, 0.875],
 'Task #6 Average': [1.375, 0.875]
 }
)
print(data)

Figure 3.4: Example of two code cells detected as clones by the Duplicate
Ratio Function 1. The Levenshtein distance between the two snippets is 57

and its Duplicate Ratio (DR) is 0.27.

Now, in Figure 3.4 we have the exact same code as Figure 3.3, but with the

difference that it contains 4 more lines of code. This fact of having more lines of code

while preserving the same Levenshtein distance will lower the Duplicate Ratio from

0.63 to 0.27, which is within the range of the cut-off value, hence marking it as a true

positive.

This is how the λ values control the detection of clones in Duplicate Ratio Function

1. There is a ratio between the Levenshtein distance and the length and lines of

code of snippets. With the introduction of these weights into my detection function I

aimed to introduce bias for complex routines instead of weighting all snippets equally.

25

The rationale for this decision was that, for Jupyter notebooks I observed that users

introduce many quick and short debugging statements which add very little in terms

of contributions to the actual code of a notebook. This is probably due to the fact that

Jupyter notebooks were described as being “scratch pads”, “preliminary work” and

“short-lived”, as described in the study conducted by Kery and Myers [7]. I think

my solution weights in favor of complex routines, which are the ones I considered

important enough to be counted.

3.6 Methodology

3.6.1 Detecting Code Cell Duplicates

I started with a random sample of 1,000 GitHub repositories containing 6,515 note-

books 4 . I cloned each repository and looked at the latest commit available. I then

extracted all code cells from each notebook from each of the 1,000 repositories. Once

I had extracted all code cells from a repository, I ran Duplicate Ratio Function 1 on

every code cell, comparing each cell against all others in the repository. Based on

the duplicate counts, I calculated a Repository Duplicates Ratio, which is the ratio of

duplicated cells against the total number of code cells.

3.6.2 Inductive Coding of Detected Duplicates

Finally, once I computed all duplicates throughout the 1,000 repositories, I randomly

selected a sample of 500 duplicates and thematically coded [44] them with the help

of a colleague from my laboratory. The purpose of this task was to understand the

main programming goal of these duplicates. During the thematic coding phase, both

my colleague and I tried to answer questions like: what is the snippet’s goal and what

is the snippet trying to compute. This process was done after computing all possible

duplicates.

This process was done in several iterations. At each iteration, we tried to re-

fine my taxonomy by merging categories together, e.g., Mathematics which accounts

4All artifacts generated for this thesis are provided at https://doi.org/10.5281/zenodo.3836691

https://doi.org/10.5281/zenodo.3836691

26

Figure 3.5: Image depicting the process of inductive coding performed by me
and a colleague as part of this thesis.

for snippets of code computing math oriented tasks, like Linear Algebra, Numerical

Analysis, and others, were merged together with Statistics under one main category:

Mathematics. After our individual coding process was completed, we began to merge

our categories together, there was substantial overlap in the categories we came up

with, and in the case of differences, we analyzed each snippet individually, to later

assign a category by consensus.

3.7 Results

I searched for duplicates using Duplicate Ratio Function 1 on 897 repositories, con-

sisting of 6,386 notebooks containing 78,020 code cells. 103 repositories were no

27

longer available, and roughly half of the 897 repositories did not contain a single

clone. Only 429 contained more than 28 code cells in total (across all notebooks in

that repository). Since 28 was the median, and the number of code cells in a reposi-

tory is exponentially distributed, I discarded repositories with fewer code cells to a)

reduce the running time and b) ensure trivial repositories were not counted. Of these

remaining 429 repositories with at least 28 code cells, roughly 80 did not contain du-

plicated snippets. From that analysis, I detected 5,872 Type-1, Type-2 and Type-3

code duplicates in total. My mining results show that 74% (4,355 out of 5,872) of

the clones were Type-2 and Type-3, and the rest were Type-1. This result is quite

interesting, because it shows that roughly 26% of all duplicates in Jupyter notebooks

are exact duplicates (Type-1)! The number of code duplicates in a repository varies

mostly between 0 and 100, with some outliers. I now discuss my findings for the

distance between duplicates (their duplicate type), the distribution of duplicate ratio

(DR), and duplicate purpose.

3.7.1 Duplicate Type

The Levenshtein distance (LD) between code cells follows an exponential distribution,

with a median of 21, mean of 41.08, standard deviation of 59.66, minimum value of

0 and maximum value of 535. Most duplicates detected by my function were Type-1

and Type-2 (closer to zero), with a long fat-tail where some Type-3 (further away

from zero) duplicates were detected.

At the intersection of the two dashed red lines are the Type-1 (26% ≈ 1,500)

clones and the rest are Type-2 and Type-3 (74%) clones. From Figure 3.6 we can

observe that the clones’ Levenshtein distances follow an exponential distribution, and

so most clones are closely related to each other. So, increasing the cut-off value would

only add false positives, without affecting the overall count much.

3.7.2 Repository Duplicates Ratio

Duplicate ratio measures the number of duplicate code cells over the total number of

code cells in a repository. It also follows an exponential distribution, with a median

28

Figure 3.6: Histogram of Levenshtein distances as computed by Duplicate
Ratio Function 1 for the cut-off value of 0.3. Since this figure corresponds to a

histogram and I used bins of size 30, the intersection of the two dashed red
lines show the number of Type-1 duplicates (Levenshtein distance equal zero).

ratio of duplicates per repository of about 5.0% with a mean and standard deviation of

µ = 7.6% (one in thirteen), σ = 8.3%. The minimum ratio was 0%, e.g., a repository

with no duplicates, and the maximum ratio was 47.5%, e.g., a repository where nearly

half the code cells were duplicates.

In Figure 3.7, I plotted the number of notebooks per repository against number

of code duplicates (left), and I did the same for code cells (right). We can observe

that the number of code duplicates in a repository varies between 0 and 100, with

some clear outliers, like the case of the top-right example, where a single repository

contained ≈ 300 notebooks with ≈ 500 duplicated snippets of code. We can also

observe that the number of notebooks in a repository seldom surpasses 100, with

29

Figure 3.7: Jupyter notebooks against code duplicates per repository (left)
and code cells against code duplicates per repository (right). The red lines

corresponds to the Regression Line with their corresponding R2 values.

most repositories containing between 0 and 100 notebooks. Now, in the case of cells

per repository, we can observe that the bulk of repositories in this data set contain

between 0 and 500 cells, with the majority concentrating at or below 250 cells. Mind

that these are code cells per repository and other types of cells are not included!

3.7.3 Duplicate Span

A quality duplicates can have is their span — to how many notebooks inside a repos-

itory they were copied to. We can observe a very simple example illustrating this

quality in Table 3.1, where the same block of code A is duplicated into notebooks one

and three within the same repository; this will give a span number of two. The same

for code B, which is duplicated into notebooks two and four, given a span number of

two also.

The results returned by my study are that, for 897 repositories analyzed, the

maximum span number was 80, which implies that a single snippet of code was

duplicates across 80 different notebooks within the same repository. The median value

is 1.0 with a mean and standard deviation of µ = 1.3, σ = 3.34, respectively. Again,

if we plot a histogram of this metric we would obtain an exponential distribution,

with the majority of spanning numbers closer to 0 with a long tail. What this means

is that most clones are replicated with or without variations to mostly just one other

30

Repository A −→ Notebook 1 −→ Code Block A

Notebook 2 −→ Code Block B

Notebook 3 −→ Code Block A

Notebook 4 −→ Code Block B

Table 3.1: Example of spanning of clones across notebooks in the same
repository.

notebook in a repository. But, in some extreme cases, one clone can be replicated to

many other notebooks by the same user.

3.7.4 Coding of Duplicates

Figure 3.8: Inductive coding of cell code snippets marked as duplicates by
my function.

Figure 3.8 shows the result of my inductive coding. Snippets of code that are

duplicated the most within Jupyter notebooks are the ones whose main activity con-

cerns visualization (21.35%), followed by machine learning (15.45%), definition of

functions (12.85%) and data science (9.03%).

31

3.8 Limitations

3.8.1 Limitations of the Clone Detection Code

Counting unique instances of duplicated code cells in Jupyter notebooks has proven

to be a cumbersome task from a programming perspective. Although cells in Jupyter

notebooks can contain metadata and other identifiable information, they introduce

the inconvenience of not possessing a unique identifier that I could use to uniquely

identify a certain cell instance within a repository. In fact, my approach to counting

cell duplicates is one that can lead to some under-reporting of duplicates. For each

cell, I triangulated the SHA256 hash of its code, the notebook’s file name and its

number. That approach was used to prune cells that have been counted already,

and so avoiding counting the same cell more than once. A very simple example

will be a repository with 10 code cells and 5 Type-1 duplicates. In order to count

these correctly, I will have to count all five as being duplicates, which will produce a

Repository Duplicates Ratio of 0.5 (5
10

= 0.5), but since Jupyter code cells have no

unique identifiers, that I could extract and use to mark cells that have been computed

already, I had to use the triangulation method mentioned above. This approach is

not perfect, since there can be copies of a notebook that share these exact same

characteristics.

This under-count of duplicates constitutes a limitation to my study, since it is my

estimate that a small percentage of duplicates may have been omitted by my code.

Future studies should take this Jupyter limitation into consideration while attempting

to compute duplicates. Jupyter notebooks could introduce unique identifiers for cells

— e.g., a timestamp of when the cell was created, or a unique hash based on cell

creation information — in order to make the detection and counting of duplicates

as accurate as possible. But for this study, it should be noted as a limitation of the

study and treated as such when interpreting the results.

32

3.9 Discussion

Mining software repositories looking for how much duplication occurs in Jupyter

notebooks is an important step if we want to understand reuse in this new medium

of computation, since copying and pasting from online sources and other notebooks

is the most basic form of reuse. Mining software repositories to analyze other types

of reuse are needed. Quantifying how many notebooks contain imports to internal

modules is necessary if one is to claim this study as complete, but lets consider this

as a first step into understanding this form of reuse, viz. duplication.

Detecting duplicates and near-duplicates has proven to be cumbersome from the

programming perspective, and a bit elusive as well, maybe that is why industrial clone

detection studies varies so much in their detection percentages — between 5 to 20%

and sometimes much more [5,38]. The majority of these studies focused on industrial

or production software and not on Jupyter notebooks, which can be considered to be

a different approach altogether from regular programming paradigms [7]. Given the

transient and messy nature of Jupyter notebooks [33], I would have assumed there

be a higher count of duplicates, since users of this tool are usually not worried about

programming standards, recommendations and techniques. Maybe this is a hint in

itself, maybe the right tools are not in place to foster this kind of reuse, or maybe

users of this tool users are not prone to this kind of reuse. To dig deeper into these

issues I designed and executed a second study, which I present in the next chapter of

this thesis.

3.10 Chapter Summary

This first study provides an estimate to how much code is being duplicated across

GitHub repositories containing Jupyter notebooks, as well as the main programming

goal of these duplicates. On average 7.6% of a repository containing notebooks are

cloned snippets, and their main programming goal is mostly some type of data vi-

sualization. This estimate contains some limitations which were explained in the

Limitations section (Section 3.8) of this chapter, and should be taken into considera-

33

tion when interpreting the results. What this first study could not answer was from

where these duplicates came from, or how users incorporated them into their note-

books. To answer these questions I had to conduct a second study — a Contextual

Inquiry — which helped me understand more about users’ reuse behaviour.

34

Chapter 4

Observing Users Using Jupyter

Notebooks

The power of the unaided mind is highly overrated. . . The real powers

come from devising external aids that enhance cognitive abilities.

—Donald Normal, Things That Make Us Smart

In order to better understand how users of computational notebooks reuse code,

I conducted an observational study in my lab. I observed Jupyter users reusing code

using Jupyter notebooks, git and web browsing.

I used this observational study to answer RQ2: How does cell code reuse

happen in Jupyter notebooks? and RQ3: What are the preferred sources

for code reuse in Jupyter notebooks?

4.1 Methodology

I observed the behaviour of eight participants (six M.Sc. and two Ph.D.). All were

University students from Computer Science (6) and Chemistry (2); two were female;

three last used notebooks over one month ago, five within the past day. Four re-

ported intermediate programming skill, two advanced, and two beginner. I explicitly

expressed to my participants that I was not measuring programming abilities. I re-

cruited participants with experience with Jupyter notebooks, irrespective of their level

35

TASK #1

Action 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

P1 1 31 3 30 31 2 3 31 32 30 3 30 31 4 3 30 5 4

P2 13 1 2 32 3^ 30 19 30 31 3 30 31 4 19 30 4 3 30 5

P3 13 1 3 13 31 2 3 31 32 30 30 4 3 30 5 31

P4 1 3 31 2 3 32 3 30 4 3 30 19 30 5

P5 20 31 1 31 2 32 14 31 2 32 3 30 3 30 3 20 36 20 36 4 3 30 3 30 5

P6 1 7 2 32 34 3 31 3^ 30 3 13 3 30 19 30 4 3 30 3 30 29 6 8 9 17

P7 1 2 16 3 32 3 30 19 30 4 19 30 3 4 14 4 3 4 3 4 3 30 3 30 3 30 19 30 19 30 4 19 30 4 19 30 19 4 19 30 4 19 30 7 5

P8 1 2 3 32 3 30 3 4 3 13 3 30 5 7 8 9

Actions

1 Create new notebook 11 Reorder cells 21 Browse Git repo 31 Switch to instructions tab

2 Copy dataset 12 Open file explorer 22 Git checkout or revert 32 Paste dataset

3 Type code 13 New cell 23 Download repo 33 Switch to another notebook

4 Browse online 14 Delete cell 24 Download notebook 34 Type markdown

5 Complete task 15 Copy (Cut) & paste cell 25 Duplicate notebook 35 Paste code

6 Save notebook 16 Type comments 26 Download from internet 36 Switch to working notebook

7 Rename notebook 17 Git push 27 Open notebook 37 Git diff

8 Git add 18 Edit previous task 28 Open command line

9 Git commit 19 Retype code (Correction) 29 Incomplete task

10 Copy code 20 Browse GitHub repo 30 Execute cell

Reuse Actions

Copy & Paste Code (Own or Third-Party)

Duplicate Notebook

Revert from Git

Copy & Paste Cell

Observe Examples: Only take into
consideration examples where the user
has typed code (3 & 19) right after
browsing online (4) or right after a (33 &
36) actions. This latter example presents a
problem, where the user might have seen
the example and decided to do another
action before reusing the code.

Notes

* = Task performed on another notebook.

^ = Potential problem performing the task.

Internal Reuse.

TASK #2

Action 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

P1 2 33 1 3 30 32 30 4 3 4 3 30 4 3 30 4 3 30 30 29 4

P2 1 15 19 30 5 33 36 31 36 6

P3 33 8 9 31 2 1 32 3 13 3 32 30 30 4 10 35 30 4 10 35 4 3 4 3 30 5 31 36 4 31 6 33 6* 8 9

P4 20 31 2 1 3 30 3 32 3 30 31 13 3 2 32 3 30 20 31 20 23 28 27 4 31 4 31 3 30 4 31 19 30 19 4 19 30 4 28 30 19 4 31 4 31 4 3 4 10 35 30 4 3 30 5

P5 1 7 31 2 32 30 3 30 20 28 20 4 3 4 10 35 3 4 3 30 19 30 5

P6 2 1 32 34 13 4 31 4 10 3 30 13 35 3 33 13* 3* 30* 19* 30* 5* 3 13 3 30 19 30 4 3 30 3 30 4 10 35 30 6 3 30 19 30 5 7 8 9

P7 4 1 7 10 35 3 4 3 30 5

P8 1 7 33 2 3 32 30 4 10 35 3 4 3 13 3 30 5 37 8 9

TASK #3

Action 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

P1 1 31 7 7* 7* 31 2 3 30 32 30 3 30 3 2 32 30 4 3 30 4 3 30 5 6

P2 1 3 31 33 33 36 2 36 32 3 6 3 30 3 30 5 6 31

P3 1 33 10^ 35 13 31 2 32 30 30 31 33 10 35 30 33 10 35 3 31 2 32 30 5 31 6 8 9 31 20

P4 33 28 4 1 10 35 30 30 31 1 3 33 10 35 3 31 2 32 3 31 2 32 31 3 4 10 35 30 19 30 5

P5 6* 1 2 32 3 30 33 10 35 33 10 35 33 10 35 3 30 30 5 20 31

P6 1 2 32 34 30 3 30 13 3 4 3 31 3 4 3^ 4 3^ 30 13 3 30 19 30 4 3 30 13 3 30 5 7 8 9 20 24 27

P7 1 6 10 35 2 32 3 30 5

P8 1 7 31 33 10 35 13 2 32 4 10 35 13 3 13 3 13 3 30 5 6 8 9

1

Figure 4.1: Coding of steps my participants made while completing the tasks
for this observational study. Coded from video and audio recordings.

of proficiency with programming languages. I drew this convenience sample through

personal contacts and email.

Each participant was asked to solve three different tasks using the lab’s com-

puters. These tasks were distributed as Jupyter notebooks according to the level of

proficiency each participant reported having (Levels A, B, C, below). Each set of

tasks were of varying difficulty. Each task was designed to take around 20 minutes to

complete, but participants were given more time if needed. Full instructions for how

to complete each task was given in full detail on each Jupyter notebook. In total,

each participant received three Jupyter notebooks with instructions for each of the

three tasks 1 . Two small data sets (10 elements) were also provided within each

notebook with instructions. The tasks given to participants were (in the order that

they were presented to the participant):

Proficiency Level A

1All artifacts generated for this thesis are provided at https://doi.org/10.5281/zenodo.3836691

https://doi.org/10.5281/zenodo.3836691

36

1. Calculate the mean of a data set.

2. Calculate the sum of all elements of a data set.

3. Calculate the mean of data set #1 and calculate the sum of all elements of

data set #2.

Proficiency Level B

1. Calculate the standard deviation of a data set.

2. Create and plot a histogram with all elements of a data set.

3. Calculate the standard deviation of data set #1 and create and plot a his-

togram with all elements of a data set.

Proficiency Level C

1. Create a function that calculates the mean of a data set.

2. Create a function that calculates the standard deviation of a data set.

3. Calculate the mean of a data set using a function and write the function in

the notebook. Calculate the standard deviation of a data set using a function

and write the function in the notebook.

Task 1 and 2 were designed to be completely independent of each other, while

task 3 was an intersection of the previous two (e.g., participants could have re-used

the solutions to task 1 and 2). Tasks that were based on data exploration, remained

fairly generic, and did not rely much on external libraries.

The restrictions imposed on the participants on how to accomplish these tasks were

minimal. I told them each task should be completed in a notebook different from the

one given with the instructions. This allowed me to observe if users created new

notebooks or reused old ones. Supported languages were Python, R and JavaScript,

which the participant could choose at any time, or change in the middle of the task if

needed. Participants were told they could use any resource they found online. I also

linked the instructions to a GitHub repository that contained the solutions to each

of the three tasks in its commit tree (See Figure 4.2).

37

Figure 4.2: Picture showing the provided GitHub web interface with the
repository’s commit tree.

I observed each participant during a time frame of roughly 60 minutes. I took de-

tailed notes of the behaviours each participant displayed. Audio and screen video was

also recorded. The observational study was complemented with a questionnaire and a

follow-up unstructured interview. Audio, video and notes were coded for qualitative

and quantitative conclusions. Video coding was important to quantify the steps each

participant took to complete each task, to understand order and to sequence and find

patterns in participant behaviours. The video coding resulted in a detailed workflow

analysis with tasks coded as shown in Figure 4.1. Audio was transcribed and coded

to derive the qualitative aspect of the answers each participant gave.

4.1.1 Coding of Video Data

Video (screen recording) of each participant was analyzed exhaustively and each ac-

tion performed by the participant was coded, irrespective of its importance. The

coded information was: the action performed, the starting and ending time of each

38

task, and time of action. In Table 4.1 I listed all possible action codes. The coding

was done in two stages, the first one was manually, using pen and paper and then all

codes were verified and transcribed to a spreadsheet, producing the result displayed

in Figure 4.1.

Code Action Type

1 Create new notebook NR

2 Copy dataset NR

3 Type code NR

4 Browse online NR

5 Complete task NR

6 Save notebook NR

7 Rename notebook NR

8 Git add NR

9 Git commit NR

10 Copy code NR

11 Reorder cells NR

12 Open file explorer NR

13 New cell NR

14 Delete cell NR

15 Copy (Cut) and paste cell R

16 Type comments NR

17 Git push NR

18 Edit previous task NR

19 Retype code (Correction) NR

20 Browse GitHub repo NR

Code Action Type

21 Browse Git repo NR

22 Git checkout or revert R

23 Download repo NR

24 Download notebook NR

25 Duplicate notebook R

26 Download from internet NR

27 Open notebook NR

28 Open command line NR

29 Incomplete task NR

30 Execute cell NR

31 Switch to instructions tab NR

32 Paste dataset NR

33 Switch to another notebook NR

34 Type markdown NR

35 Paste code R

36 Switch to working notebook NR

37 Git diff NR

Table 4.1: All codes corresponding to actions participants made while
performing tasks. Cells marked in red correspond to reuse actions. The type

column means NR=Non-Reuse and R=Reuse.

39

Figure 4.3: Picture showing the process of quantifying how much each
participant reused from either internal or external sources. In the picture we
can observe the coding of sites they visited while browsing online, along with

their corresponding times.

40

4.1.2 Quantifying Internal and External Reuse

I use the times collected during the video coding to quantify how much time users

spent browsing online for information. I collected the start and end times in total for

the each task (1, 2 and 3) and then using the video recordings I coded each time a

participant browsed online for information, irrespective of if they reused or not after

browsing. I also collected which sites they visited and for how long. Once I coded all

this information, I combined all browsing times into one final browsing percentage for

each participant. This process was done manually using pen and paper (Figure 4.3).

4.2 Results

Participants duplicated code in a variety of ways. After analyzing the video artifacts,

I created the following coding scheme to describe how they reused their code:

C&P: Copying and pasting lines of code.

CELL: Copying and pasting code entire cell (reuse from notebooks).

TYPE: Typing code written in another notebook of theirs, instead of C&P it.

DUPE: Duplicating a notebook of their own.

GIT: Reusing from git.

TYPE ON: A special case where participants would browse online and would

decide to type the code they extracted from the source instead C&P it.

NONE: No reuse, directly enter solution from memory.

All participants reused code quite extensively, and only one participant typed from

memory (NONE). Most participants reused code from online sources. Foraging for

code online is a popular form of code reuse among programmers and analysts, as was

pointed out by Brandt et al. in [45]. I also observed that participants reused code

from internal sources, like other notebooks. This was expected given they had easy

access to previous tasks. None of the participants decided to reuse from git (GIT),

41

although full solutions to each task were readily available in the local git repository

and on GitHub. The full count of each reuse code can be found in the next table

(Table 4.2).

Code Overall Count Task #1 Task #2 Task #3

C&P 20 times 0 times 8 times 12 times

CELL 1 times 0 times 1 times 0 times

TYPE 0 times 0 times 0 times 0 times

DUPE 0 times 0 times 0 times 0 times

GIT 0 times 0 times 0 times 0 times

TYPE ON 36 times 16 times 14 times 6 times

NONE 1 times 0 times 0 times 1 times

Table 4.2: Count of reuse codes for all participants and across all tasks.
Highlighted in red are the highest counts.

4.2.1 Code Reuse from Other Notebooks

Four out of eight participants decided to reuse what they did in task 1 and 2 for task

3. The other four decided to perform task 3 from scratch, even though they had the

necessary code for task 3 already implemented for task 1 and 2 (recall that task 3 is

deliberately structured as the union of 1 and 2). When asked why, one participant

(P1) said: “Muscle memory. As a means of preserving knowledge.”

P2 had trouble copying and pasting the code inside a cell. One explanation for

this is that in Jupyter, when doing a right-click of the mouse, only copy or cut at the

cell level is available. P4 and P6 both stated that they enjoyed typing.

4.2.2 Code Reuse from External Sources

All participants in this second study used the web extensively to assist in the com-

pletion of each task. The time spent browsing online accounted on average for 18%

42

of the total time spent working on tasks (Browsing time: µ = 233 ± 180 seconds). I

also observed that they relied on online resources like API documentation and tuto-

rials for repetitive tasks, e.g., some participants browsed online more than once for

examples on how to import the same library, even though they performed the same

import just minutes before (Browsing count: µ = 9.6 ± 3.8 times). I noted that some

participants used the web as a memory delegate [45].

Figure 4.4: Time participants spent browsing online for information,
segmented by task.

Figure 4.5: Average time participants spent browsing online for information.

Browsing and reusing common libraries in Python was also a popular resource

among participants, as all of them relied heavily on the numpy library for solving the

tasks. I noticed this reliance on external sources and libraries saved time and effort

for the participants, since calculating the mean of a data set took them at most two

lines of code to accomplish using the numpy library (including the import statement)

instead of using for loops.

43

Participant Total Time Browsing Time Percentage Count

P1 570 sec 176 sec 30% 11 times

P2 792 sec 170 sec 21% 3 times

P3 1148 sec 155 sec 13% 7 times

P4 2152 sec 678 sec 31% 14 times

P5 1091 sec 95 sec 8% 6 times

P6 1972 sec 178 sec 9% 13 times

P7 1830 sec 317 sec 18% 14 times

P8 1158 sec 95 sec 9% 9 times

Table 4.3: Portion of study spent browsing online per participant. Total
Time refers to the total amount of time performing all tasks and Count refers

to the number of times participants opened a browser to browse for
information.

Figure 4.6: Inductive coding of sites participants visited while solving tasks.
Note: Google implies information taken directly from Google’s results page.

Figure 4.6 shows my coded responses for which sites were visited according to

44

primary role. The two most visited sites among participants were tutorials (e.g.,

tutorialspoint) and API documentation, followed by Stack Overflow. Participants

queries were usually something short and precise, like “mean numpy” or “histogram

numpy”, but in some cases I observed longer, more natural language oriented queries,

like “what is git repo? and how to use it?” or “how to create Jupyter project”.

I observed two distinct browsing habits: half the participants visited web sites nine

times or fewer (Table 4.3), spending overall 129 seconds on average. For example,

P2 spent 21% of their time browsing online, but only did this three times. They

took their time skimming the web page for code reuse. The other half had 11 or

more visits, taking 337 seconds on average. This group used web resources like an

external memory aid, going back and forth between the working notebook and the

online resource multiple times.

4.2.3 Code Reuse from VCS

I observed that although some participants went to browse for the provided solutions

on the study’s GitHub repository, they either did not restore them from the git

history, or lost interest after a few tries. The solutions were not readily available at

the HEAD of the commit tree, so knowledge on how to traverse the commit tree and

on how to move the HEAD of the tree to a particular commit or how to checkout

a particular commit was necessary in order to access the solutions. That is, above

average knowledge of git was necessary for reusing code from the local repository.

I received various answers from my participants when asked why they did not

restore the provided solutions from git. Two out of eight participants stated “Suffi-

cient Knowledge” as their answer. It was implied by these participants that the tasks

were not sufficiently difficult to merit restoring them from git. And they perceived

restoring from git as far more time consuming than actually coding the task.

There was also a perception of complexity in restoring from git as noted by one

of my participants (P2), which I will discuss in the next section.

45

Perceived Complexity of Reusing from VCS

One behaviour that struck me as interesting while observing participants solving

tasks, was the perceived complexity of restoring from git, which they seem to show

each time they went for the solutions on the repository. As noted by one participant

(P2), when asked why they did not restore from git :

“. . . if I got really stuck, then just look things up, because probably it would

have taken me more time to find it in git, than actually do it myself.”

Other recorded answers were:

P1: “Again is personal, like personal learning, where this is for more time crunch

then maybe or if I had no idea on how to do it I probably would have seen the

answer but because I want to kind of familiarize myself again looking straight at

the answer didn’t seem to make a hole lot of sense for me.”

P5: “I went for it but I couldn’t find the answer in this little thing here. I don’t

even know what any of the buttons mean, I don’t know I just was following the

link and imagined that it would just be right there.”

Figure 4.7: Participants who tried to reuse from git.

In Figure 4.7 we can observe that some participants tried multiple times with no

success to restore the solutions from the repository. These tries account for intents

using either the command line git tools or the GitHub web interface.

It is important to mention that two participants claimed to have missed the part

in the instructions where it mentioned the solutions, and two participants claimed

46

to have misunderstood the instructions, they claimed to have understood that the

solutions needed to be in the repository, which it may explain why they pushed their

code into the repository.

And finally, one participant (P4) went looking for the solution for task 2, but

they had problems finding it. When asked, they stated that the solution was not

there, because they had looked only at the last commit and failed to look for it in

the commit tree.

4.2.4 Internal vs. External Reuse

Internal reuse entails foraging for information in previously created notebooks (e.g.,

previously completed tasks for the study), while external reuse entails foraging for

information online (e.g., web sites, forums, Stack Overflow, etc.). As we can observe

in Figure 4.8, participants foraged more from external sources for tasks 1 and 2, while

the balance shifted a bit more towards internal sources for task 3. This behaviour is

not surprising since it is only natural to assume given the setup of the experiment

that participants will reuse what they did for tasks 1 and 2 on 3. One participant

(P2) reused from memory, as we can observe in task 3 in Figure 4.8.

Figure 4.8: Reuse from internal sources vs. external ones, segmented by task.

4.2.5 C&P vs. TYPE ON vs. NONE Reuse

In Figure 4.9 I listed statistics for the number of times participants decided to use

C&P instead of TYPE ON. For task 1, participants typed the solutions. For task

2, the balance is almost equal, having participants reused with both methods almost

47

equally. And for task 3, participants decided to C&P more, with the exception of

only one participant (P6), who decided to redo entirely task 3 instead of reusing

what they did before. One participant (P2) typed from memory (NONE, as we can

observe for task 3 in Figure 4.9.

Figure 4.9: Number of times participants went browsing online for
information, segmented by task.

Overall participants followed the desired pattern of reusing what was done in

previous tasks to complete the final one, which may imply, that during exploration

tasks users tend to reuse from the latest and most available notebook they worked

on, interwoven with online browsing.

4.2.6 Writing to git

Three out of eight (37.5%) participants decided to commit their completed tasks to

the local git repository, although that was not a requirement for any of the tasks.

This behaviour reinforces the hypothesis I had at the beginning of my study that git

is being treated commonly as a “write-only” medium of storage, as a safety measure

for user’s code, where all changes are being written to, in case they will be needed in

the future, but they are seldom read from.

After asking these participants about their behaviour, they answered the following:

P3:

Me: Why did you commit to the repo, if it wasn’t in the instructions?

48

Participant: Just to keep track of the work.

Me: Why did you wanted to keep track of the work?

Participant: Because if, sometimes, when working on any project I get lost,

if I made an error in the... is very simple, just a habit of doing it.

Me: So when you work on projects using notebooks you usually use

git?

Participant: Yes

Me: So, you tend to commit to git a lot?

Participant: Yes, when I work in completing little functions, I commit.

P8:

Me: So, why did you added your code to the repo?

Participant: I don’t know, just habit. Like I work on many machines so, I

like storing things in GitHub, um, that way if I do go and make a change to

something and ends up not being good I can just revert it and go back to a

“working good state”.

Me: So, you do revert to previous versions of your notebooks?

Participant: Um, I wouldn’t say I do it very often with notebooks, um, but

with code or any plain text in general... - the problem again with can get

into it if you want... but the problem with the notebooks is that it contains

all that metadata, it’s kind of a double edge sword, right? So sometimes is

good to have that metadata because I’ve worked on some notebooks that are

fairly computationally complex and the output is saved and my solution too...

it depends if you are working in a Jupyter notebook with one person or more

than one person... If you are the only person doing commits then it’s OK, but

if you are working with other people that are doing commits, well, even if you

are the only person, if you want to see what a particular commit did, it’s very

hard to look for just the code, right? Like if I want to look at a diff of code. I

like to look at diffs of code to see what it is.

49

4.3 Limitations

4.3.1 Observer-expectancy Effect

Some of the participants of this study might have been affected by the observer-

expectancy effect [46, 47], due to the fact that some participants knew me and prob-

ably wanted to boost their effectiveness by performing tasks more rapidly that they

would normally have done. Although, I explicitly explained before the study, that

no programming skills were going to be measured during this study, this might have

influenced the result of it.

4.3.2 Limitations of GitHub’s Interface

GitHub provides a function for rendering notebooks on-site, which during the exper-

iment was not functioning properly. This was noted by most of the participants who

decided to browse for the solution. It does not present an impediment to finding the

answer, but it does hinder notebook exploration.

4.4 Discussion

In this section I will discuss my results and post-study observations. I observed three

distinctive reuse behaviours while conducting my observations: different sources of

reuse are harder to attain, users used the web as a sort of memory delegate [45] and

finally, how users treated git as a “write-only” tool for redundancy.

4.4.1 Foraging for Information

Information Foraging Theory is a theory of how humans seek information in informa-

tion intensive tasks. It applies ideas from Optimal Foraging Theory to understand how

human users search for information. This latter theory is based on the assumption

that, when searching for information, humans use “inherent” foraging mechanisms

that evolved to help them hunt for food in the wild [48].

50

Optimal foraging theory is a theory in biological science of how animals hunt for

food in the wild. Pirolli et al. found similarities between users’ information search

patterns and animals’ food foraging strategies. They used these similarities to develop

IFT (Information Foraging Theory) [48, 49]. One similarity between both theories is

that humans are predators who search for information in the same way they search

for preys. IFT is based on what the authors described as information scents. Humans

assess how much useful information they can attain on a given information source or

patch, against the effort required to attain that information. They use information

features, e.g., folder names, variable names, web links, which the user can process to

gain knowledge. When the chances of obtaining useful information from a particular

patch dims or when the cost of attaining information from that particular patch is too

high, they move on to a different one. Humans perform this assessment very effectively

and unconsciously, and it is my assumption that it is directly related to how users

navigate folders, source code repositories, the web, and computational notebooks. In

each patch, predators make one of three choices: (i) to forage for information within

the patch, (ii) to forage to a new patch or (iii) to engage in enrichment by modifying

their environment. These choices are informed by the predator’s information scent,

gathered from cues in the environment.

Understanding how humans search for information can help improve the usability

of the Jupyter notebook interface, and foster the creation of new plugins and ex-

tensions that might enable users of computational notebooks to find and reuse code

effectively and efficiently. I have seen this to be especially true when it comes to

reuse behaviour linked to some sources of information, such as: version control sys-

tems and source code repositories (git, SVN, Mercurial, others), potentially due to

interface complexities.

After conducting my observations I noticed behaviours that could be further ex-

plained and understood by applying IFT concepts, like when some participants tried

to reuse code from version control systems (git). When this occurred, I observed that

some participants tried multiple times with no success to restore the solutions from

the repository, and according to IFT: even though the information scent is strong

enough for the VCS path, the effort required to attain it is higher than the reward,

51

hence the participant decides option (ii) to forage to a new patch, which in the case of

this study I observed to be online reuse of code. It appears to be much easier for users

of computational notebooks to launch a web browser and look for code examples on

sites like Stack Overflow, than it is to navigate complex interfaces like git through the

command line. This, I noticed to be especially true for simple tasks involving just a

few lines of code. The more complex the reuse necessity becomes, the more I assume

the reward of the path would be, and users will probably try harder to attain it, but

more studies are needed to validate this idea.

4.4.2 External Memory and the Google Effect

The Google Effect or sometimes also called digital amnesia is the effect of forgetting

information which is easily available on the internet [50]. During my observations I

noticed this behaviour in almost all of the participants. I observed that they relied

heavily on search engines and other sites like Stack Overflow and tutorials for very

simple tasks, some which participants had completed just minutes before. For in-

stance, I noticed one participant searching online multiple times for how to import

a specific library into Jupyter, when just minutes before they performed that exact

same task. This has lead me to infer, that users of Jupyter notebooks rely heavily

on online browsing to perform their tasks and analyzes irrespective of the complexity

of them. Brandt et al. in [45] referred to this as a memory delegate, and it aligns

with my observations, for many participants did use the internet as a sort of memory

delegate while completing their assignments.

4.4.3 VCS as Write-Only

An emerging trend I noticed for some participants, was how they treated git as

a “write-only” medium of storage. It seems they committed their code into the

repository out of habit or in case they needed to go back to retrieve code again. This

was despite the fact that the simplicity of the tasks did not merit such an elaborate

redundancy.

Perhaps, these participants were used to committing their code on a daily basis

52

for other projects, and this behaviour was ingrained in them, so much that they

ported it to this study. Overall, what I observed was that writing their changes to

the git repository did not took them much time or effort, so, it did not affect their

performances at all, they were still able to complete the tasks in time, and they felt

comfortable with the process of committing, kind of like a peace of mind.

4.5 Chapter Summary

This second study shows how and from where code is being reused for Jupyter note-

books. In this study, I tried to answer RQ2 and RQ3 by using an observational

study (Contextual Inquiry), complemented by a questionnaire and a brief unstruc-

tured interview.

The main takeaway of this second study is that it appears that code from online

sources seems to be easier to attain, outweighing other ones like reuse from other

notebooks and of version control systems. As for the preferred method of reuse, there

seems to be an implication in the results that C&P outweighs other methods, like

typed reuse (TYPE ON), notebooks duplication (DUPE), and the others.

There is still much to be done in order to fully understand the how and where

questions posed as part of this work, but these will be mentioned in the future work

section in the last chapter of this thesis.

53

Chapter 5

Discussion, Limitations &

Implications

5.1 Discussion

For my research into “Code Duplication and Reuse in Jupyter Notebooks” I used two

research strategies to triangulate my understanding of code duplication and reuse.

In my first study, I conducted a computational data analysis of existing GitHub

notebooks, with the intention of quantifying and understanding duplicated snippets

of code. In my second study, I focused on how that duplication occurs with human

observation in a controlled lab setting. I observed that in both studies duplicated code

was important for users of this tool to support their exploration sessions and achieve

their results in the least possible time. I also identified some curious behaviours

regarding the use of version control in conjunction with Jupyter notebooks, and finally,

I revealed some patterns in the use of external sources for reuse, viz. reuse from web

sites.

In this section I will discuss my findings through an analytical lens, explaining my

results and findings, and discussing the limitations of both my studies and how these

should be taken into consideration when interpreting my results.

54

5.1.1 Code Duplicates and Their Programming Objectives

Mining software repositories looking for how much duplication occurs in Jupyter

notebooks is an important step if we want to understand reuse in this new medium

of computation, since copying and pasting from online sources and other notebooks

is the most basic form of reuse. Quantifying how many notebooks contain imports

to internal modules is necessary if one is to claim this study as complete, but lets

consider this as a first step into understanding this form of reuse, viz. duplication.

Figure 5.1 shows an example of a Type-2 snippet of code detected by my function

(Duplicate Ratio Function 1). We can observe in the figure that both blocks of

code are similar, with the exception of the variables passed as arguments to the

plotting function. My first study analyzed and categorized these types of duplicates

thoroughly, by first counting how many duplicates were present in a repository and

finally by inductively coding these duplicates according to their main programming

goal.

Figure 5.1: Example of a Type-2 duplicate detected by Duplicate Ratio
Function 1 with Levenshtein distance of 42 and Duplicate Ratio of 0.27. The
main programming goal of this particular snippet was coded as Visualization.

My results show that on average 7.6% of a repository is self-duplicated code (26%

exact duplicates and 74% near-duplicates), spanning the same duplicate in some

cases up to 80 different notebooks within a single repository, which clearly indicates

that users tend to reuse the same notebook on different occasions and for different

purposes. There was an extreme case of cell reuse, where a single import statement

was duplicated across 80 different notebooks, sometimes exactly and other times with

55

little modifications to it. In this particular case, it would be beneficial to the user to

put those imports into modules, which can be imported and called from a script inside

each notebook, instead of copying and pasting it across them. In that particular case,

putting the same import into a script would reduce clutter in the notebook, while at

the same time creating a single point of modification.

My first study also shows that snippets regarding some form of data visualization

are the ones to be duplicated the most, roughly 21.35% of the time. It was my intuition

that given the ease of use and visualization functions provided by Jupyter notebooks,

that they would be used mostly for some form of data visualization supporting analysis

and exploration. Of course, the fact that visualization snippets are duplicated the

most, does not imply in any way that this is the main use given to notebooks.

Detecting Jupyter cell code duplicates has proven to be cumbersome from the

programming perspective. Jupyter notebooks have a limitation, in which they don’t

store information that could be used to uniquely identify a particular cell in them.

This limitation made almost impossible to count the exact amount of duplicates in

a repository, which is something I discussed thoroughly in the limitations section of

Chapter 3. Irrespective of this limitation, I am most certain I was able to approximate

the actual count of duplicates per repository within an acceptable margin of error.

Another aspect that made the detection of duplicates a cumbersome task was the

tuning of parameters that Duplicate Ratio Function 1 uses to detect duplicates, these

were tuned according to manual inspection after runs with smaller samples, eventually

leading to the selection of parameters that produced the best results. This parameter

selection process could be further augmented by using an oracled data set [43]. An

oracled data set of clones is one classified and inspected manually, by which a detection

algorithm could be tested for precision and recall.

Overall, this clone detection study shed some light into the question of how much

of a notebook is duplicated code, and what is the goal or nature of those duplicates. It

is a first try and much work still is needed in order to have a specific count of duplicates

in Jupyter notebooks. Modifications to notebooks could also be introduced in order

to support this counting process, since, as I mentioned in the previous paragraph,

Jupyter notebooks do not support unique identification of code cells, hence making

56

the process of counting much harder.

5.1.2 Methods of Reuse

Participants in my study reused code using almost all available methods, with the

exception of duplicating notebooks (DUPE), this was a surprise since I expected

they would duplicate notebooks as they progressed through the tasks, but instead

they decided to create new notebooks for each task and fill them with the necessary

code to achieve the result. Copying and pasting (C&P) code, either from other

notebooks and from online sources was common, as was typing code (TYPE and

TYPE ON). In some instances, I observed participants observing code present in

web sites for later to re-type that same code instead of copying and pasting it, which

was strange, since it is much faster and convenient to just select the relevant code,

copying it into the clipboard and pasting it in the desired notebook. I also observed

that one participant had a few inconveniences with the shortcuts in place for copy and

paste, which may explain why they resort to typing the code. These inconveniences

were related to the JupyterLab environment, which provides shortcuts to copy and

paste at the cell level (CELL) instead of individual lines of code. Only one participant

decided to reuse from memory (NONE) instead of relying on previous code, but this

can be explained due the to simplicity of some tasks. Some participants intended

to reuse from the repository in which the code resided but were not able to do so,

possibly due to inconveniences with either git or GitHub’s interface, and some did

not read fully the instructions where it stated that this type of reuse was available.

Adding better support for reusing previously used snippets will greatly enhance

reuse in Jupyter notebooks. One such missing function is one offered by the Google

Colab’s team, called “Code snippets” (See Figure 2.2). This function permits users

to index and search previously used notebooks, from where code can be reused with

a single click. It is my opinion that this type of reuse function will greatly facilitate

reuse and speed up exploration in notebooks, and it is one missing from JupyterLab.

Another missing function from JupyterLab is one that allows users to pass param-

eters to notebooks, much like a script would do. It is possible though to achieve this

57

functionality but some modifications and scaffolding is needed first, akin to Paper-

mill [31]. Passing parameters to Jupyter notebooks allows one to design notebooks

that are more flexible, which in turn may foster better programming practices at

the time of designing these notebooks. By passing parameters to notebooks at run-

time, one might infer that the nature of these tools will change more towards a fully

functional reusable script than a transient scratch-pad.

5.1.3 Internal Code Reuse

While conducting my observational study I observed participants reusing quite of-

ten what they did before from internal sources. This kind of internal reuse is one

that comes from one’s own notebooks; for the participants in my observational study

these were previous tasks. It also came to my attention that some participants did

not exploit the full potential of reuse tools offered by JupyterLab, viz. duplicating

a notebook. Not using these functions may add redundant time to one’s explo-

ration and in some cases produce sub-optimal results. Past studies had researched

about in-notebook reuse, offering tools that supported history traversing and reutiliza-

tion [23, 51], but after interviewing participants I could understand that most issues

aroused when they had to find past code inside their own codebase. This lead me to

hypothesize that better indexing and searching tools are required, along with ways to

quickly execute a notebook from outside the programming environment. This quick

execution of notebooks is already being offered on GitHub and nteract [16], where it

is possible to quickly and conveniently render a notebook for visualization. Interfaces

like this foster internal reuse, but come at the expense of having to save the notebook

with its output. Sometimes this is not an issue, but when the output is considerably

in size (hundreds of megabytes), then it could become an issue.

5.1.4 External Code Reuse

I found the use of external sources very common. In Figure 4.6, I reported on the

most frequent types of sources used. Participants frequently skimmed these sites and

used them as external aid, and accessed them for short periods of time (browsing

58

statistics per participant can be found on Table 4.3).

I also looked at what types of duplicates were most common in Figure 3.8. Given

the results, it seems like a possible correlation exists between task familiarity and

importance. Visualization snippets, for example, are frequently duplicated, because

they are vital to the analysis process, but often unfamiliar to the analyst, who may

not have extensive visualization training, and instead relies on support from libraries

such as Altair or GGPlot.

Duplication initially seems like a major time saver — since the chart, for instance,

can be quickly reproduced — but eventually adds to technical debt and maintain-

ability issues [29]. At that point, the duplication can be refactored into a common

module, e.g., the corporate visualization module that defines fonts, themes, label

sizes, etc., or common functions and classes used across notebooks. Commercial data

science teams at places like Netflix have begun to support this process with extensive

scaffolding around the basic notebook metaphor, for example, with Netflix’s Metaflow

or AWS Step Functions. Even further back, scientific workflow software [52] has been

managing data processing models for many years.

Identifying technical debt can be difficult for people unfamiliar to software engi-

neering best practices, that is why I recommend creating modules as soon as possible.

Jupyter notebooks offer a “magic” function called autoreload1, which can be used to

reload imported libraries automatically. Its use is pretty straightforward, and many

examples can be found on the internet on how to use it. The benefit of this autoreload

function is to allow for one to modify a module outside of Jupyter with changes ported

automatically to the kernel running the notebook, which makes the overall process

smoother. So, one can use an external IDE like PyCharm2 or other to work on the

backend code/module and use Jupyter notebooks only as frontend — an interface

from where to execute the module and retrieve results. This workflow will surely

reduce technical debt, with only the minor inconvenient of needing a bit more work

to set up the initial environment.

1https://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html
2https://www.jetbrains.com/pycharm/

https://ipython.readthedocs.io/en/stable/config/extensions/autoreload.html
https://www.jetbrains.com/pycharm/

59

5.1.5 Use of Version Control

Version control for notebooks has been the focus of several notebook plugins, many

blog posts and feature requests (e.g., jupyterlab-git3, verdant4, nbdime5), and several

research studies [23, 34, 51, 53]. Some notebook services like Nextjournal6 value the

importance of preserving history in computational notebooks so much, that they offer

automatic versioning of the notebook and related artifacts. My first study did not

examine the role of version control as a source for duplication, in part because iden-

tifying duplication from version control is tricky (since files can be renamed, sections

moved, etc.). However, part of my lab study was intended to explore how version

control systems (VCS), specifically git, were used in code reuse. I saw that users

struggled with the interaction model of git and were unable to use it for duplication

purposes.

5.2 Limitations

5.2.1 Construct Validity

The main constructs I discuss are code duplicate and code reuse. I used the Lev-

enshtein distance between code cells to detect duplicates, similar to Duala-Ekoko

and Robillard in [42], which is different than using an Abstract Syntax Tree (AST),

which is more common in other code cloning research. This was due to the nature of

Jupyter notebooks, which can support multiple kernels and programming languages,

so I required a cross-language solution. I also set thresholds for duplicates, which

are determined empirically based on soundness of the duplicates. However, for a dif-

ferent sample, these thresholds would provide sub-optimal results. In the future, an

improvement would be to use a systematic analysis or grid search to find the param-

eters for duplicate detection and compare the detection results with an oracled data

3https://github.com/jupyterlab/jupyterlab-git
4https://github.com/mkery/Verdant
5https://nbdime.readthedocs.io/en/latest/
6https://nextjournal.com

https://github.com/jupyterlab/jupyterlab-git
https://github.com/mkery/Verdant
https://nbdime.readthedocs.io/en/latest/
https://nextjournal.com

60

set [43]; this is especially true for λ1 and λ2, which control weights for the length and

lines of code. However, I am not claiming general results for code duplication in all

notebooks, and my findings should be seen as restricted to this sample. Also, given

the emphasis I assigned on larger snippets and quantity of lines of code, there could

be some under-reporting of duplicates, especially of shorter, more concise snippets of

code, like short print statements, and other debugging techniques.

As I observed users to detect code reuse, it is possible that my small tasks did

not test all forms of reuse. For example, my protocol did not allow for reuse from

other participants. Similarly, users were constrained to use lab equipment. Using

their own devices may have shown different reuse techniques (e.g., local copies of

documentation).

5.2.2 Internal Validity

I used 897 randomly selected repositories, consisting of 6,386 notebooks and eight

convenience sampled students. My random sample of notebooks relied on the data

set created by Rule in [54]. Because I sampled 897 repositories and only considered

inter-repository reuse, I may have missed reuse derived from external sources, such

as popular repositories, tutorials, and training material. This almost certainly led to

an under-reporting of code reuse.

Convenience sampling does not support statistical generalization, but since this

was an exploratory study, generalization of the observed phenomena was not one of my

objectives. While it is possible the behaviours I report on were unique to this sample,

the participants all engaged in data analysis for several years in undergraduate and

graduate courses at the university.

I asked for self-assessed proficiency with notebooks and version control. This has

a potential observer-expectancy bias because I was known to the participants, who

may have wanted to inflate their self-assessment. As an exploratory study, this is

acceptable, but to test a specific hypothesis, my measures should be less prone to

bias.

The tasks were scaled for the estimated skill of my participants. For example,

61

np.mean(lst) is sufficient to solve task 1 part 1, and for an experienced data scien-

tist, could be retrieved from working memory. However, the tasks were designed for

students, and if I were to use professionals, the tasks would have been more challeng-

ing. These tasks were designed to stimulate external/distributed cognition. I used

three levels of complexity for my study, so that experienced analysts were given tasks

commensurate with their skill. However, this is an imperfect matching process.

5.2.3 External Validity

I sampled from notebooks on GitHub, which may differ from notebooks used in

corporate settings. Similarly, the use of students as subjects makes it difficult to draw

generalizations about industry practitioners [55]. That being said, the students in my

sample reported using notebooks (and the other tools) frequently, and information

on how professionals use notebooks is still limited.

5.3 Implications

I conclude this chapter with implications for practice and research based on the results

of both studies I conducted.

5.3.1 Implications for Code Duplication and Reuse

Practice Implications

After conducting my study, I argue in favor of tools that support this type of reuse,

whether they are offered through functions like Google Colab’s Code snippets or sim-

ilar ones designed for other types of notebooks. I also argue, that when a notebook’s

codebase becomes to extensive, and to avoid incurring in technical debt, the user

could create independent modules which can be imported locally using JupyterLab’s

autoreload function. This function allows to automatically port changes made to

local libraries without the need to reload them manually. This type of reuse by us-

ing modules should facilitate the reuse of a codebase across other notebooks in the

62

same project as well, which will decrease technical debt and maintainability issues

exponentially.

JupyterLab could introduce an automatic clone counter, alerting users of the ac-

cumulating technical debt and recommending them to create modules to allocate

snippets that are duplicated the most into routines. PyCharm offers a similar func-

tion, where it detects and alerts the user of duplicated lines of code. A function like

this will permit the user to encapsulate snippets into routines which could be called

directly from notebooks.

Research Implications

I observed that while this type of duplication was present in my sample, users strug-

gled to easily make use of previous cells, even when these cells solved exactly the same

problem. This suggests that merely providing a mechanism to duplicate code has to

overcome barriers of ease of use. It seems to be simpler, for some cases, to copy and

paste from online sources (like Stack Overflow) than to do the same thing from one’s

own work (reinventing the wheel attitude).

5.3.2 Implications for VCS with Jupyter Notebooks

Practice Implications

Based on my limited study, version control of notebooks is less important for future

code reuse than for archival purposes or collaboration. For single-user notebooks, in

particular, complex tools for version control and diff might be replaced with simpler

save and restore functionality like in backup interfaces (such as Apple’s Time Ma-

chine model). In part, this is already supported in JupyterLab, using its checkpoint

function, which makes a checkpoint of the notebook at regular intervals.

Research Implications

Evidence from other notebook studies [3, 33, 54], and my observations in this thesis

show that code duplication and reuse using version control history is a challenge.

However, git was designed for software development on the Linux operating system,

63

and evidence suggests the code reuse scenario is low on the list of reasons developers

use version control. As Codoban et al. reported, software developers instead use

software history for debugging, program understanding, and collaboration [56]. This

use case is different than searching for previous solutions and may explain why version

control tools like git are a bad fit for exploratory programming. Future research should

devise new tools to bridge this gap by studying new interfaces to skim through the

commit tree more easily, rendering notebooks as they appear, similar to the work

done by Kery et al. in [57], where they studied methods for effective foraging by data

scientist in order to find past choices.

5.3.3 Implications for External Reuse

Practice Implications

Social media and external (web) sources are widely recognized as a vital part of mod-

ern programming [58]. Programming support in notebooks should recognize this and

support it, possibly by offering Stack Overflow recommendations from within Jupyter-

Lab based on the code being typed in a cell. Ponzanelli et al. had studied this before,

where they devised two Elipse plug-ins called SEAHAWK [59] and PROMPTER [60]

to offer within IDE Stack Overflow discussions based on the code being typed inside

the IDE.

5.3.4 Implications for Internal Reuse

Practice Implications

Indexing and searching tools might provide a way to quickly traverse previously used

notebooks in search of routines and functions, which could reduce substantially the

time and effort needed for this, and in return fostering reuse from internal sources.

Better ways to name and organize notebooks could improve reusability of notebooks

in one’s own codebase. Designing new ways to support this process could enhance and

foster reusability without compromising other software engineering best practices.

64

Chapter 6

Conclusions & Future Work

6.1 Summary of Research

In this chapter I would like to summarize my results by research question and end

this document with a final remark.

RQ1: How much cell code duplication occurs in Jupyter notebooks? And

what is the main programming goal of these duplicates?

According to my results, approximately one in thirteen code cells in Jupyter note-

books contain a duplicate of other cell in the repository. The type of snippet that

gets duplicated the most, are the ones involving some form of visualization of data,

followed by snippets performing machine learning techniques. These two types of

snippets comprise approximately 36% of all duplicated snippets within Jupyter note-

books.

RQ2: How does cell code reuse happen in Jupyter notebooks?

The preferred method of reuse in Jupyter notebooks is by copying and pasting code,

with copy by typing of code being also a popular way to reuse. The forms of reuse

that were used the least was via git checkout or git revert, and by duplicating an

entire notebook. My studies also suggest that more work needs to be done in order

to promote and highlight current tools and commands in Jupyter, like duplication of

65

notebooks, copying and pasting of entire cells and others.

RQ3: What are the preferred sources for code reuse in Jupyter notebooks?

My results indicate that the main source of code reuse in Jupyter notebooks is by

online browsing, in other words, most code comes from web sites and online forums.

And the least effective source of reuse are version control systems like git. Also, sur-

prisingly to me, reusing from old owned notebooks didn’t appear to be as popular as

I thought at the beginning of my studies.

6.2 Final Remarks

I examined how code duplication and reuse happens in Jupyter notebooks. My first

study looked at how much self-duplication (e.g., within the repository) exists. I

discovered that on average 7.6% of code in repositories is self-duplicated. However,

this did not explain how or from where code was duplicated to begin with.

I therefore conducted a lab study with eight participants and deliberately crafted

tasks designed to encourage reuse behaviour. I observed how participants reused code

to solve data science tasks, and how they leveraged version control, online sources

and other notebooks. Reusing code from online sources proved to be the preferred

method of reuse for my participants, with 18% of their time spent browsing for code

examples online, and version control systems proved to be the least effective method

of reuse. Snippets of code that visualize data are the ones that are duplicated the

most.

I conclude this thesis by discussing observations and implications from my studies.

First, while code duplication is clearly common in notebooks, the source of that

duplication is important. Second, although much attention focuses on version control,

for code reuse, other sources, such as API examples, are more important. Finally,

these external sources are used for various tasks. Notebook interfaces should support

modularization and reuse to improve cognitive support for data scientists.

66

6.3 Future Work

The studies I conducted for this thesis investigated code duplication and reuse in

Jupyter notebooks at a broader scale. It is recommended, that if we are really in-

terested to determine the most effective and efficient method of reuse in Jupyter

notebooks, then several studies should follow this one. For example:

• A study that measures the exact time users spend using each source of reuse,

would show with much more accuracy which information source is easier to at-

tain and under which circumstances. This can be done by logging to file, events

performed by users while using notebooks in real settings instead of a controlled

lab experiment. As a complement, future studies could observe users while con-

ducting their work using notebooks with their own devices and while solving real

problems. It would be best if observations could be made as much for academic

environments as for industrial ones, observing everyday problems users of this

platform have.

• Also, future studies should consider harder and longer tasks for participants to

solve, and measure how many lines of code are being reused from the different

sources, instead of measuring only if reuse happened or not. This would add more

granularity to the results presented in this thesis. Also, due to the simplicity of

some tasks in my study, I was not able to observe particular cases of complex

routines’ reuse, which may show reuse from other sources not shown here in my

studies.

All these questions and other possible research paths would need to be conducted

before we could better understand reuse behaviour in Jupyter notebooks. Doing so

will entice better tools to be build for code reuse, allowing developers and analysts to

speed up their exploration sessions, while keeping up with software engineering best

practices and extracting the full potential of this new medium of computation.

67

Appendices

68

Appendix A

Examples of Duplicated Snippets

The following figures are examples of duplicates that Duplicate Ratio Function 1 de-

tected. They were computed using different cut-off value thresholds for the purpose

finding the optimal cut-off value to use as a detection parameter (See Section 3.5.1).

Figure A.1: This image shows two snippets of code marked as clones by my
Duplicate Ratio Function 1. Threshold 0.0-0.1. This particular snippet has a

Duplicate Ratio (DR) value of 0.04.

69

Figure A.2: This image shows two snippets of code marked as clones by my
Duplicate Ratio Function 1. Threshold 0.1-0.2. This particular snippet has a

Duplicate Ratio (DR) value of 0.18.

Figure A.3: This image shows two snippets of code marked as clones by my
Duplicate Ratio Function 1. Threshold 0.2-0.3. This particular snippet has a

Duplicate Ratio (DR) value of 0.25.

Figure A.4: This image shows two snippets of code marked as clones by my
Duplicate Ratio Function 1. Threshold 0.3-0.4. This particular snippet has a

Duplicate Ratio (DR) value of 0.39.

70

Figure A.5: This image shows two snippets of code marked as clones by my
Duplicate Ratio Function 1. Threshold 0.5-0.6. This particular snippet has a

Duplicate Ratio (DR) value of 0.53.

Figure A.6: This image shows two snippets of code marked as clones by my
Duplicate Ratio Function 1. Threshold 0.8-0.9. This particular snippet has a

Duplicate Ratio (DR) value of 0.88.

71

Appendix B

Observational Study Tasks

Figure B.1: Jupyter notebook describing what the participant had to do
during the observational study for Task #1 (Level A).

72

Figure B.2: Jupyter notebook describing what the participant had to do
during the observational study for Task #2 (Level A).

73

Figure B.3: Jupyter notebook describing what the participant had to do
during the observational study for Task #3 (Level A).

74

Figure B.4: Jupyter notebook describing what the participant had to do
during the observational study for Task #1 (Level B).

75

Figure B.5: Jupyter notebook describing what the participant had to do
during the observational study for Task #2 (Level B).

76

Figure B.6: Jupyter notebook describing what the participant had to do
during the observational study for Task #3 (Level B).

77

Figure B.7: Jupyter notebook describing what the participant had to do
during the observational study for Task #1 (Level C).

78

Figure B.8: Jupyter notebook describing what the participant had to do
during the observational study for Task #2 (Level C).

79

Figure B.9: Jupyter notebook describing what the participant had to do
during the observational study for Task #3 (Level C).

80

Appendix C

Observational Study Questionnaire

C.1 Background

1. What is your occupation?

� Academia (Professor, researcher)

� Student

� Industry

� Other:

2. What is your domain?

� Computer Science

� Life Science

� Mathematics

� Other:

81

C.2 Questions about Experience

3. How would you rank your proficiency with computational notebooks?

� None

� Novice (basic knowledge and usage)

� Intermediate (being able to setup the notebook’s environment)

� Advanced (installation of extensions and widgets, extending the notebook)

4. How long have you been using computational notebooks?

� Less than one year

� Between one and three years

� More than three years

5. How much experience do you have using git?

� None

� Novice (basic commands, pull, push commit)

� Intermediate (merging, solving conflicts, branching)

� Advanced (rebasing, filtering, resetting, tagging)

6. (If applicable) How long have you been using git?

� Less than one year

� Between one and three years

� More than three years

82

7. Which tool/process do you normally use for versioning your computational note-

books, and how would you rate your experience with each of these tools/pro-

cesses?

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

8. Which computational notebook software do you normally use, and how would

you rate your experience with each of these tools?

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

C.3 Questions about Computational Notebooks

10. Computational notebooks are simple to use.

Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

11. When working with computational notebooks, would you say you work alone or

in a team?

Alone | Team

12. What would you say is the main task for which you use computational notebooks?

83

C.4 Questions about Version Control

13. Would you say that you normally revert to previous versions of notebooks?

Yes | No

C.5 (If applicable) Questions about git

14. git can be used effectively to version computational notebooks.

Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

15. Traversing previous versions of notebooks are easy with git.

Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

16. Have you used any following interfaces for interacting with git while working on

Jupyter? (Check all that apply)

� Command Line

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

� GitHub

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

� Git Desktop App

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

� GitKraken

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

� jupyterlab-git extension

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

� nbdime extension

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

� jupyterlab-github extension

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

84

� Verdant extension

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

� Other:

Very Unsatisfied | Unsatisfied | Neutral | Satisfied | Very Satisfied

85

Appendix D

Observational Study Interview

D.1 General

Did you ever had any problems managing versions of your notebooks? (If so, which

problems)

86

Appendix E

Observational Study Questionnaire

Responses

Figure E.1: Coded answers for questions 1 and 2 of the questionnaire.

87

Figure E.2: Coded answers for question 3 of the questionnaire.

Figure E.3: Coded answers for question 4 of the questionnaire.

Figure E.4: Coded answers for question 5 of the questionnaire.

88

Figure E.5: Coded answers for question 6 of the questionnaire.

Figure E.6: Coded answers for question 7 of the questionnaire.

Figure E.7: Coded answers for question 8 of the questionnaire.

89

Figure E.8: Coded answers for question 10 of the questionnaire.

Figure E.9: Coded answers for question 11 of the questionnaire.

90

Figure E.10: Coded answers for question 12 of the questionnaire.

Figure E.11: Coded answers for question 13 of the questionnaire.

91

Figure E.12: Coded answers for question 14 of the questionnaire.

Figure E.13: Coded answers for question 15 of the questionnaire.

Figure E.14: Coded answers for question 16 of the questionnaire.

92

Appendix F

Observational Study Interview

Responses

These are the audio-transcribed responses given by the participants of the open-

ended supplemental interview which had only one question: Did you ever had any

problems managing versions of your notebooks? If so, which problems.

For which the participants responded the following:

P1: “Yeah so, managing versions, we did that previously with Git and it was

challenging because when you store different versions it just make no sense once

you uploaded to GitHub, like hum, you can like if you compare versions on GitHub

it was just basically a bunch of random text that was next to each other as opposed

to normally when you use version control on GitHub it’s very clear, ah, I had

three lines here or I deleted two lines, but using Jupyter notebooks and Git it was

completely just random and then we did some research and we found this kind of a

semi-workaround, we you strip out all the output and if you strip out the metadata

and then use Git to store your version, it improved it quite a bit, so it wasn’t as

bad, but I mean ideally if there was a way where let’s say you use Git with your

Jupyter notebooks when the result is the same as any other type of language like

Python or Java then that would be the ideal solution to version control.”

P2: “Umm, either I just keep working on just one notebook that has 100 lines or

I when I find something that works I take that bit and start a new notebook and

93

then continue.”

P3: “Not applicable. Never managed versions of notebooks before.”

P4: “Not applicable. Never managed versions of notebooks before.”

P5: “There’s just too many of them. Organization is, I don’t know if this is a

quality of myself or of Jupyter, um but they are kind of all over the place in terms

of sectioning and what scripts are appropriate for what folders in my own life. I’m

very bad at naming the notebooks, I don’t know how much would be included in

one notebook vs making a new notebook, you know. Like if I’m graphing something

and a lot of my graphs I pull data from a database, so doing that like pre-work I

can just going and going if I want, tagging on and on. And then if I make a new

notebook it seems like a pain cause I just send like copy and pasting the first chunk

of code from all my other notebooks.”

P6: “Yeah, I did. So what I generally do is I my most of the time I use Google

Colab notebooks, so yeah, Jupyter would be the second one and often times I work

on Colab because everything is properly set up inside the Google Colab and the

versioning issue how I handle it over there is I duplicate my notebook and rename

with the new date or a maybe if I’m doing some machine learning modelling if

I’m getting some accuracy for that model then maybe I’ll version that like OK,

accuracy this, this notebook, accuracy that notebook. That’s not good because it

doesn’t I mean, I don’t know I’m kind of satisfied but neutral with that, basically

if I’m storing my notebook, if I’m giving some dates to those like if I dated today

but if I’m working on maybe 5 to 10 notebooks today, I can not use dates and I

should add time. So finding them later can be a problem. If I want to OK day

after tomorrow if I sit and I want to look at my previous version then manually just

looking at the names of the files and you know seeing those timestamps, I don’t

find that very much appealing.”

P7: “Yeah, the thing is I always have versioned controlled with Git so whenever

notebook has like different fails, so even if I don’t want a particular kind of, so

whenever you run the hole notebook that one differs from the previous one right.

94

If you have something different in the... say for example if I have some errors or

some duplication messages or something like that, it doesn’t have to be errors, can

be some messages from the Python libraries or something, so those things show in

the output column, output cell and now we have a different, even if you had done

nothing different in the notebook, you have a different notebook from the previous

version.”

P8: “Yes. If somebody just changes code, let’s say there, you working collaborative

with somebody and they do a PR or some change request and you need to review

it, well, depending on how much the data they’ve changed, if they’ve just changed

a line of code and haven’t ran it, then maybe the only diff is that change in the line

of code. And depending on how they were sneaky about making that code change

and whether they tested it or not, you know if they’ve ran that notebook and then

did they diff on that, then it would be a totally different thing, so for me to review

or look at code and say OK yeah this makes sense what you are doing is hard,

because of all the metadata and the output and everything else. So the solution

was to rip all that metadata out, now that became complex in the one instance

that I can think of, because we were doing some fairly complex computations, and

it will take hours to run some of these things.”

95

Appendix G

H.R.E.B. Ethics Approval

In the next page I have attached the approval for my research study by the Human

Research Ethics Board at the University of Victoria. In total 5 documents were

submitted for approval, and those are:

• Appendix 01 - Invitation to Participate (Public - Email): Template for

emails sent to potential participants in all areas.

• Appendix 02 - Invitation to Participate (Private - Email to Organiz-

ers): Template for emails sent to professors at the University of Victoria for

recruitment of participants.

• Appendix 04 - Verbal Consent: Text read to participants before they par-

ticipated in the study. Contains instructions and minor disclaimers.

• Appendix 05 - Signed Consent (Contextual Interview): Document con-

taining the consent form that each participant reviewed and signed before par-

ticipating in the study.

• Appendix 06 - Questions Draft (Contextual Interview): Document with

questions asked to participants during the study.

96

Office of Research Services | Human Research Ethics Board
Michael Williams Building Rm B202 PO Box 1700 STN CSC Victoria BC V8W 2Y2 Canada
T 250-472-4545 | F 250-721-8960 | uvic.ca/research | ethics@uvic.ca

Certificate of Approval - Amendments

PRINCIPAL INVESTIGATOR Neil Ernst (Supervisor)

PRINCIPAL APPLICANT Andreas Koenzen
Master's student

UVIC DEPARTMENT Computer Science

ETHICS PROTOCOL NUMBER
Expedited review - delegated

18-1283

ORIGINAL APPROVAL DATE 08-Aug-2019

APPROVED ON 04-Oct-2019

APPROVAL EXPIRY DATE 07-Aug-2020

PROJECT TITLE Version Control for Computational Notebooks

RESEARCH TEAM MEMBERS
Margaret-Anne Storey - Co-PI, UVic

DECLARED PROJECT FUNDING None

DOCUMENTS INCLUDED IN THIS APPROVAL
APPENDIX 05 - Signed Consent (Contextual Interview).pdf - 30-Sep-2019
APPENDIX 02 - Invitation to Participate (Private - Email to Organizers).pdf - 30-Sep-2019
APPENDIX 01 - Invitation to Participate (Public - Email).pdf - 30-Sep-2019
APPENDIX 06 - Questions Draft (Contextual Interview).pdf - 07-Jul-2019
APPENDIX 04 - Verbal Consent.pdf - 07-Jul-2019

CONDITIONS OF APPROVAL

This Certificate of Approval is valid for the above term provided there is no change in the protocol.

Modifications
To make any changes to the approved research procedures in your study, please submit a “Request for Modification” form. You must
receive ethics approval before proceeding with your modified protocol.

Renewals
Your ethics approval must be current for the period during which you are recruiting participants or collecting data. To renew your
protocol, please submit a “Request for Renewal” form before the expiry date on your certificate. You will be sent an emailed reminder
prompting you to renew your protocol about six weeks before your expiry date.

Project Closures
When you have completed all data collection activities and will have no further contact with participants, please notify the Human
Research Ethics Board by submitting a “Notice of Project Completion” form.

Certification
This certifies that the UVic Human Research Ethics Board has examined this research protocol and concluded that, in all respects,

the proposed research meets the appropiate standards of ethcis as outlines by the University of Victoria Research Regulations
Involving Human Participants.

Dr. Rachael Scarth
Associate VP Research Operations

Certificate Issued On: 04-Oct-2019

97

Bibliography

[1] J. M. Perkel, “Why jupyter is data scientists’ computational notebook of choice,”

Nature, vol. 563, pp. 145–146, Oct 2018.

[2] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise data analysis

and visualization: An interview study,” IEEE Transactions on Visualization and

Computer Graphics, vol. 18, pp. 2917–2926, Dec 2012.

[3] M. B. Kery and B. A. Myers, “Exploring exploratory programming,” in

2017 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pp. 25–29, Oct 2017.

[4] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic pro-

gramming,” Proceedings of the 4th international workshop on End-user software

engineering - WEUSE ’08, 2008.

[5] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,”

School of Computing TR 2007-541, Queen’s University, vol. 115, 2007.

[6] M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley

Professional, 2018.

[7] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers, “The story

in the notebook: Exploratory data science using a literate programming tool,”

in Proceedings of the 2018 CHI Conference on Human Factors in Computing

Systems, CHI ’18, (New York, NY, USA), pp. 174:1–174:11, ACM, 2018.

98

[8] A. Rule, A. Birmingham, C. Zuniga, I. Altintas, S.-C. Huang, R. Knight,

N. Moshiri, M. H. Nguyen, S. B. Rosenthal, F. Pérez, and et al., “Ten sim-

ple rules for writing and sharing computational analyses in jupyter notebooks,”

PLOS Computational Biology, vol. 15, p. e1007007, Jul 2019.

[9] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-scale study

about quality and reproducibility of jupyter notebooks,” 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR), May 2019.

[10] R. Koschke, “Survey of research on software clones,” in Duplication, Redun-

dancy, and Similarity in Software (R. Koschke, E. Merlo, and A. Walenstein,

eds.), no. 06301 in Dagstuhl Seminar Proceedings, (Dagstuhl, Germany), Inter-

nationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss

Dagstuhl, Germany, 2007.

[11] S. Uchida, A. Monden, N. Ohsugi, T. Kamiya, K.-i. Matsumoto, and H. Kudo,

“Software analysis by code clones in open source software,” Journal of Computer

Information Systems, vol. XLV, pp. 1–11, 04 2005.

[12] Google Colab. https://colab.research.google.com.

[13] Google Cloud AI Platform. https://cloud.google.com.

[14] Microsoft Azure Notebooks. https://notebooks.azure.com.

[15] Databricks. https://databricks.com.

[16] nteract. https://nteract.io.

[17] Apache Zeppelin. https://zeppelin.apache.org.

[18] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27, pp. 97–

111, Feb 1984.

[19] K. E. Iverson, “A programming language,” Proceedings of the May 1-3, 1962,

spring joint computer conference on - AIEE-IRE ’62 (Spring), 1962.

https://colab.research.google.com
https://cloud.google.com
https://notebooks.azure.com
https://databricks.com
https://nteract.io
https://zeppelin.apache.org

99

[20] F. Perez and B. E. Granger, “Ipython: A system for interactive scientific com-

puting,” Computing in Science & Engineering, vol. 9, no. 3, pp. 21–29, 2007.

[21] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic,

K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,

C. Willing, and et al., “Jupyter notebooks - a publishing format for reproducible

computational workflows,” in Positioning and Power in Academic Publishing:

Players, Agents and Agendas, 20th International Conference on Electronic Pub-

lishing, Göttingen, Germany, June 7-9, 2016., pp. 87–90, 2016.

[22] A. Rule, Design and Use of Computational Notebooks. PhD thesis, UC San

Diego, 2018.

[23] M. B. Kery, A. Horvath, and B. Myers, “Variolite: Supporting exploratory pro-

gramming by data scientists,” in Proceedings of the 2017 CHI Conference on Hu-

man Factors in Computing Systems, CHI ’17, (New York, NY, USA), pp. 1265–

1276, ACM, 2017.

[24] D. W. Sandberg, “Smalltalk and exploratory programming,” SIGPLAN Not.,

vol. 23, pp. 85–92, Oct. 1988.

[25] A. Silberschatz and A. Tuzhilin, “What makes patterns interesting in knowledge

discovery systems,” IEEE Transactions on Knowledge and Data Engineering,

vol. 8, no. 6, pp. 970–974, 1996.

[26] S. Phillips, J. Sillito, and R. Walker, “Branching and merging: An investigation

into current version control practices,” in Proceedings of the 4th International

Workshop on Cooperative and Human Aspects of Software Engineering, CHASE

’11, (New York, NY, USA), pp. 9–15, ACM, 2011.

[27] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,

C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson, G. Rother-

mel, M. Shaw, and S. Wiedenbeck, “The state of the art in end-user software

engineering,” ACM Comput. Surv., vol. 43, pp. 21:1–21:44, Apr. 2011.

100

[28] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code clones

matter?,” 2009 IEEE 31st International Conference on Software Engineering,

2009.

[29] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An empirical

study on the maintenance of source code clones,” Empirical Software Engineer-

ing, vol. 15, pp. 1–34, Mar 2009.

[30] J. Wang, L. Li, and A. Zeller, “Better code, better sharing: On the need of

analyzing jupyter notebooks,” 2019.

[31] Papermill. https://github.com/nteract/papermill.

[32] M. B. Kery, “Towards scaffolding complex exploratory data science programming

practices,” in 2018 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), pp. 273–274, Oct 2018.

[33] A. Head, F. Hohman, T. Barik, S. Drucker, and R. DeLine, “Managing messes

in computational notebooks,” in Managing Messes in Computational Notebooks,

ACM, May 2019.

[34] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik, “What’s

wrong with computational notebooks? pain points, needs, and design opportu-

nities,” in CHI, 2020.

[35] M. B. Kery, “Tools to support exploratory programming with data,” in

2017 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pp. 321–322, Oct 2017.

[36] Google Cloud Source Repository. https://source.cloud.google.com.

[37] K. Herzig and A. Zeller, Mining Your Own Evidence, ch. 27. O’Reilly Media,

Inc., Oct. 2010.

[38] M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some from there:

Cross-project code reuse in github,” in 2017 IEEE/ACM 14th International Con-

ference on Mining Software Repositories (MSR), pp. 291–301, 2017.

https://github.com/nteract/papermill
https://source.cloud.google.com

101

[39] S. Josefsson et al., “The base16, base32, and base64 data encodings,” tech. rep.,

RFC 4648, October, 2006.

[40] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and

D. Damian, “The promises and perils of mining github,” Proceedings of the 11th

Working Conference on Mining Software Repositories - MSR 2014, 2014.

[41] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals,” in Soviet physics doklady, pp. 707–710, 1966.

[42] E. Duala-Ekoko and M. P. Robillard, “Tracking code clones in evolving software,”

29th International Conference on Software Engineering (ICSE’07), May 2007.

[43] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and

evaluation of clone detection tools,” IEEE Transactions on Software Engineering,

vol. 33, no. 9, pp. 577–591, 2007.

[44] D. Spencer, Card sorting: Designing usable categories. Rosenfeld Media, 2009.

[45] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer, “Two

studies of opportunistic programming,” Proceedings of the 27th international

conference on Human factors in computing systems - CHI 09, 2009.

[46] B. Kantowitz, H. Roediger, and D. Elmes, Experimental Psychology. Cengage

Learning, 2008.

[47] R. Rosenthal, Experimenter Effects in Behavioral Research. Irvington, 1976.

[48] P. Pirolli and S. Card, “Information foraging in information access environ-

ments,” in Proceedings of the SIGCHI Conference on Human Factors in Comput-

ing Systems, CHI ’95, (New York, NY, USA), pp. 51–58, ACM Press/Addison-

Wesley Publishing Co., 1995.

[49] P. L. T. Pirolli, Information Foraging Theory. Oxford University Press, May

2007.

102

[50] B. Sparrow, J. Liu, and D. M. Wegner, “Google effects on memory: Cognitive

consequences of having information at our fingertips,” Science, vol. 333, pp. 776–

778, Jul 2011.

[51] M. B. Kery and B. A. Myers, “Interactions for untangling messy history in a

computational notebook,” in 2018 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC), pp. 147–155, Oct 2018.

[52] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,

M. Livny, L. Moreau, and J. Myers, “Examining the challenges of scientific work-

flows,” IEEE Computer, vol. 40, pp. 24–32, Dec. 2007.

[53] P. J. Guo, Software tools to facilitate research programming. PhD thesis, Stanford

University, 2012.

[54] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in com-

putational notebooks,” in Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, CHI ’18, (New York, NY, USA), pp. 32:1–32:12,

ACM, 2018.

[55] R. Feldt, T. Zimmermann, G. R. Bergersen, D. Falessi, A. Jedlitschka, N. Juristo,

J. Münch, M. Oivo, P. Runeson, M. Shepperd, D. I. K. Sjøberg, and B. Turhan,

“Four commentaries on the use of students and professionals in empirical software

engineering experiments,” Empirical Software Engineering, vol. 23, pp. 3801–

3820, Nov. 2018.

[56] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history under the

lens: A study on why and how developers examine it,” in IEEE International

Conference on Software Maintenance and Evolution (ICSME), Sept. 2015.

[57] M. B. Kery, B. E. John, P. O’Flaherty, A. Horvath, and B. A. Myers, “Towards

effective foraging by data scientists to find past analysis choices,” Proceedings of

the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19,

2019.

103

[58] M.-A. Storey, L. Singer, B. Cleary, F. F. Filho, and A. Zagalsky, “The

(r)evolution of social media in software engineering,” in Proceedings of the on

Future of Software Engineering - FOSE 2014, 2014.

[59] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow in the ide,”

in Proceedings - International Conference on Software Engineering, pp. 1295–

1298, 05 2013.

[60] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Mining

stackoverflow to turn the ide into a self-confident programming prompter,” in

Proceedings of the 11th Working Conference on Mining Software Repositories,

pp. 102–111, 2014.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Research Questions
	Contributions
	Structure

	Background & Related Work
	Computational Notebooks
	Uses of Computational Notebooks
	Types of Users and Programming Paradigms

	Code Duplication and Reuse in Computational Notebooks
	Chapter Summary

	Quantifying and Describing Jupyter Code Cell Duplicates on GitHub
	Code Duplicates
	Analyzed Jupyter Notebooks Data Set
	Code and Function to Detect Duplicates
	Computational Constraints
	Detection Parameters
	The Cut-Off Value
	Lambdas

	Methodology
	Detecting Code Cell Duplicates
	Inductive Coding of Detected Duplicates

	Results
	Duplicate Type
	Repository Duplicates Ratio
	Duplicate Span
	Coding of Duplicates

	Limitations
	Limitations of the Clone Detection Code

	Discussion
	Chapter Summary

	Observing Users Using Jupyter Notebooks
	Methodology
	Coding of Video Data
	Quantifying Internal and External Reuse

	Results
	Code Reuse from Other Notebooks
	Code Reuse from External Sources
	Code Reuse from VCS
	Internal vs. External Reuse
	C&P vs. TYPE_ON vs. NONE Reuse
	Writing to git

	Limitations
	Observer-expectancy Effect
	Limitations of GitHub's Interface

	Discussion
	Foraging for Information
	External Memory and the Google Effect
	VCS as Write-Only

	Chapter Summary

	Discussion, Limitations & Implications
	Discussion
	Code Duplicates and Their Programming Objectives
	Methods of Reuse
	Internal Code Reuse
	External Code Reuse
	Use of Version Control

	Limitations
	Construct Validity
	Internal Validity
	External Validity

	Implications
	Implications for Code Duplication and Reuse
	Implications for VCS with Jupyter Notebooks
	Implications for External Reuse
	Implications for Internal Reuse

	Conclusions & Future Work
	Summary of Research
	Final Remarks
	Future Work

	Examples of Duplicated Snippets
	Observational Study Tasks
	Observational Study Questionnaire
	Background
	Questions about Experience
	Questions about Computational Notebooks
	Questions about Version Control
	(If applicable) Questions about git

	Observational Study Interview
	General

	Observational Study Questionnaire Responses
	Observational Study Interview Responses
	H.R.E.B. Ethics Approval
	Bibliography

